<<
>>

§ 12. Симметрия, асимметрия и информация

В последние годы у нас значительно повысился интерес к изучению симметрии. Однако обычно понятия симметрии и ин­формации рассматриваются в отрыве друг от друга. Здесь мы попытаемся обратить внимание на объективную основу их взаи­мосвязи.

Представляется, что изучение этой взаимосвязи позво­лит глубже познать природу информации и симметрии, будет со­действовать дальнейшему развитию и взаимопроникновению методов их исследования.

Правильный ответ на вопрос о том, что такое симметрия, лежит на пути анализа становления понятия симметрии в науке [93]. Этот логико-гносеологический анализ позволяет выявить те об­щие тенденции, которые связаны с развитием данного понятия, вычленить наиболее существенные его признаки.

Развитие понятий симметрии и асимметрии неразрывно свя­зано с понятиями однородности и неоднородности, изотропности и анизотропности, равномерности и неравномерности, однообра­зия и разнообразия, порядка и беспорядка, покоя и движения, со­хранения и изменения, равенства и неравенства и т. д. Г. В. Вульф отмечает, что «симметрия состоит прежде всего в однообразии частей фигур и в однообразном расположении этих частей в фи­гуре. Это однообразие мы обнаруживаем, перемещая в простран­стве часть симметричной фигуры и замечая, что при одинаковых перемещениях эта часть периодически совпадает с другими такими же частями фигуры» [94]. О повторении однообразия, как характерной черте симметрии, говорят также К. Л. Вольф и Р. Вольф [95]. В. С. Готт [96] увязывает понятие симметрии с поряд­ком, пропорциональностью, соразмерностью, равновесием, ус­тойчивостью, Н. П. Депенчук [97] - с однородностью, В. И. Сви- дерский [98] - с равномерностью и т. д.

А. В. Шубников в ряде работ понятие симметрии развивает

на основе понятия равенства ******.

Наиболее простым является равенство совместимое (кон­груэнтность).

Смысл совместимого равенства легко понять, если рассмотреть зеркальное отображение шара. Шар, отраженный в зеркало, не отличим от своего оригинала - отображение и ориги­нал можно мысленно совместить.

Однако зеркальное отображение ряда предметов можно от­личить от оригинала. Например, если мы будем двигать правой рукой, то наше изображение в зеркале будет двигать левой рукой. В этом случае можно говорить о равенстве зеркальном (зеркаль­ности).

Исторически понятие симметрии возникло на основе ра­венства зеркального. Затем появилось уже синтетическое, родо­вое понятие равенства, включающее в себя свойства зеркально - сти и совместимости.

В геометрии оно основано на метрическом равенстве: фи­гуры считаются равными, если расстояние между произвольны­ми точками одной фигуры равны расстояниям между соответст­вующими точками другой фигуры.

Синтетическое понятие равенства, являясь единством упо­мянутых противоположностей (совместимости и зеркальности), носит двойственный характер. И эта двойственность понятия ра­венства в учении о симметрии, отмечает А. В. Шубников, вполне оправдана опытом.

Дальнейшее развитие понятия симметрии связано с вклю­чением и других видов равенств. Так, А. В. Шубников и другие ученые добавляют еще два вида равенства: антиравенство со­вместимое и антиравенство зеркальное [99]. В результате учение симметрии стало базироваться на еще более общем понятии равенства, объем которого увеличился, а содержание сущест­венно изменилось. Представления о симметрии все больше проникают в различные науки - физику, химию, биологию, причем они не обязательно связаны с геометрическими свойст­вами объектов.

Современная наука имеет дело с равенством, сохранением объектов, их свойств, связей, отношений, функций, законов и т. д. И в каждом таком случае могут рассматриваться специ­альные случаи симметрии, соответствующие определенным равенствам.

Важно подчеркнуть, что эволюция понятий симметрии в определенном отношении основана на расширении понятия ра­венства как в геометрическом, так и в других аспектах.

Можно поэтому предположить, что наиболее общее понятие симметрии связано и с наиболее общим, абстрактным понятием равенства, т. е. с тождеством как философской категорией.

Наличие некоторого тождества, инварианта есть необходи­мое, но еще не достаточное условие симметрии. Тождество лишь тогда выступает в роли симметрии, когда оно неотделимо от со­ответствующих преобразований, сохраняющих данное тождест­во. Например, чтобы доказать, что круг симметричен относи­тельно линии, лежащей в плоскости круга и проходящей через его центр, необходимо мысленно совместить одну половину кру­га с другой. Совмещение и есть определенное изменение, в ре­зультате которого сохраняется тождество (равенство двух поло­винок круга). Именно тот или иной тип изменения (вращение, сдвиг и т. д.), в результате которого появляются инварианты, то­ждества, и определяет так называемую группу симметрии (если пользоваться принятыми теоретико-групповыми понятиями). Можно предполагать, что различным видам инвариантов, тож­деств, по-видимому, взаимнооднозначно соответствуют опреде­ленные изменения, в частности группы преобразований, опреде­ляющих операцию симметрии.

Без того или иного преобразования симметрии не сущест­вует. На это вполне определенно указывали исследователи сим­метрии Г. В. Вульф, А В. Шубников, Ю. А. Урманцев и др. уче­ные. Причем в случае наиболее общего, философского понима­ния симметрии преобразование можно рассматривать как изме­нение вообще.

Полная совокупность нетождественных между собой опе­раций симметрии образует группу. Неэквивалентные, нетожде­ственные операции называются элементами группы, или элемен­тами симметрии. Нет таких объектов, которые бы не обладали ни одним элементом симметрии, так как любые объекты (или их части) всегда могут быть тождественными в отношении некото­рых изменений (например, при всех своих изменениях объект генетически тождествен самому себе).

Любое конкретное тождество, связанное с симметрией, не­обходимо дополняется изменением, движением, а значит, и раз­личием.

Связь симметрии с различием выступает в двух аспек­тах: во-первых, любой инвариант (тождество) внутри себя со­держит неинвариантные, различные компоненты и, во-вторых, любой инвариант (внешне) связан с соответствующим преобра­зованием, изменением.

Из вышеизложенного вытекает связь тождества и различия как существенных и самых общих признаков, входящих в содер­жание понятия симметрии. Это позволяет дать общее определе­ние этому понятию на базе понятий тождества и различия. Сим­метрия - это категория, обозначающая процесс существования и становления тождественных моментов (в определенных услови­ях и в определенных отношениях) между различными и проти­воположными состояниями явлений мира [100]. Понятие симметрии на основе единства тождества и различия, сохранения и измене­ния развивается и в монографии Н. Ф. Овчинникова «Принципы сохранения».

Однако Ю. А. Урманцев в рецензии на книгу Н. Ф. Овчин­никова обратил внимание на то, что в этом случае остается не­выясненным, чем же симметрия отличается от единства сохра­нения и изменения (тождества и различия), т. е. не указывается видовое отличие симметрии от сохранения и изменения. Ю. А. Урманцев дает иное общее определение симметрии. Сим­метрия - это особого рода инвариантности (виды сохранения) относительно соответствующих групп преобразований (реаль­ных и/или мыслимых изменений, обладающих теоретико­групповыми свойствами) [101].

В этом определении в качестве видового признака симмет­рии выделяются теоретико-групповые свойства. Действительно, теоретико-групповые свойства являются, с одной стороны, весь­ма общими, а с другой стороны, достаточно частными, чтобы выделить симметрию из всех других видов единства тождества и различия. Однако возникает вопрос: все ли свойства симметрии определяются теоретико-групповыми свойствами? И всегда ли симметрия будет использовать лишь один математический аппа­рат - теорию групп? [102]

Нам представляется, что свойств симметрии бесконечно много: симметрия так же неисчерпаема, как и электрон, и ин­формация, и т.

п., как любой объект и как любое свойство дви­жущейся материи. Поэтому выявленные в настоящее время теоретико-групповые свойства симметрии вряд ли являются самыми общими видовыми признаками симметрии. Эти свой­ства характеризуют лишь наиболее распространенное совре­менное понимание симметрии, и, надо полагать, в дальнейшем человеческое познание обнаружит еще более общие свойства симметрии, нежели те, которые изучаются теорией групп. По­этому, учитывая дальнейшую возможную эволюцию понятия симметрии, нужно признать, что границы между понятием симметрии и единством тождества и различия оказываются в общем не столь уж определенными. Эти границы достаточно четки, если мы имеем дело с данной математической теорией симметрии (теорией групп), а само понятие симметрии рас­сматриваем как «застывшее» в этой теории. Но эти границы уже неопределенны, если рассматривать возможную эволюцию понятия симметрии, если заранее не исключать того, что уче­ние о симметрии будет использовать не только теорию групп, но и другой математический аппарат. Ситуация здесь напоми­нает положение с теорией информации. Подобно тому как по­следняя не может использовать только теорию вероятностей, так и учение о симметрии не будет ограничиваться лишь тео­рией групп.

A. Д. Урсул. Природа информации

Из сказанного вытекает, что приведенные определения

B. С. Готта, А. Ф. Перетурина и близкое к нему определение Н. Ф. Овчинникова, будучи достаточно широкими, позволяют понятию симметрии выйти и за обычные, теоретико-групповые, рамки, схватывают важные свойства симметрии. Подобное ши­рокое определение симметрии методологически эффективно, по­скольку, как мы покажем дальше, в этом случае можно получить некоторые новые результаты.

Но прежде всего несколько слов о категории, которая яв­ляется полярной категории симметрии, т е. об асимметрии. Под асимметричными объектами можно было бы понимать объек­ты, в которых полностью отсутствовали бы элементы симмет­рии. Однако в действительности, как мы отмечали выше, по­добных объектов не существует, так как всегда обнаруживается

V» ЧУ Т~Ч

такой элемент симметрии, как единичный элемент группы.

В наличии единичного элемента группы отражается тот простой факт, что объект как таковой существует, что он тождествен самому себе. Как бы ни были различны объекты, всегда между ними обнаружится тождество (относительное равенство).

Под полностью асимметричным можно подразумевать объ­ект с бесконечным числом асимметризующих признаков. Но любой конечный объект на данном уровне не является беско­нечно асимметричным, а представляет собой или объект с мак­симальной симметрией, или объект с минимальной симметрией (или нечто промежуточное между ними). Именно минимальная симметрия и есть реально существующая асимметрия конечных объектов.

Объекты, которые не являются максимально симметричны­ми или минимально симметричными (асимметричными), будем называть диссимметричными. Таким образом, симметрия и асимметрия есть частные случаи (абстракции) диссимметрии. В самом деле, в мире не существует раздельно ни абсолютно сим­метричных, ни абсолютно асимметричных объектов. Следова-

тельно, в любом объекте всегда существует единство симметрии и асимметрии, т. е. диссимметрия.

По аналогии с элементами симметрии можно говорить и об элементах диссимметрии [103].

Взаимосвязь понятий симметрии и информации становит­ся очевидной, если сравнить их наиболее широкие определения. Предельное определение симметрии основано на связи с кате­гориями тождества и различия, понятие информации также оп­ределялось нами именно на основе этих же категорий. В из­вестном смысле категории симметрии и информации противо­положны. Ведь увеличение в объекте симметризующих призна­ков должно вести к уменьшению количества информации. И на­оборот, уменьшение в объекте числа элементов симметрии все­гда должно быть связано с увеличением количества структур­ной информации.

При этом необходимо сделать оговорку, что изменение чис­ла элементов симметрии и количества информации должно рас­сматриваться в одном и том же отношении. Если этого не учиты­вать, то легко прийти к противоположному выводу. Как ранее было отмечено, тождество, сохранение симметрии в одном от­ношении связано с различием, изменением в другом отношении, поэтому увеличение тождества (в плане инвариантности) сопро­вождается увеличением различий (скажем, изменений, обла­дающих теоретико-групповыми свойствами).

Рассмотрим подробнее различные области действительно - сти, в которых можно проследить взаимосвязь симметрии и ин­формации.

Известно, что в области неживой природы происходят как процессы симметризации и асимметризации (а лучше сказать, диссимметризации), так и изменение количества связанной в структуре косных систем информации. Нами уже отмечалось, что увеличение структурной информации неживых объектов вы­текает из действия термодинамических закономерностей (при этом рассматривались лишь открытые системы). Число спосо­бов, которыми можно осуществить распределение молекул по объему, связано с термодинамической вероятностью, причем наиболее вероятное распределение молекул - равномерное. Это состояние характеризуется максимальной энтропией (минималь­ным количеством структурной информации). Переход от нерав­номерного распределения к равномерному означает уменьшение различий в определенных аспектах, а значит, и увеличение сим­метрии именно в этих же отношениях.

Рассмотрим теперь процесс кристаллизации, происходящий под действием внесенных в жидкость кристаллов или при воз­никновении центров кристаллизации в соответствующих услови­ях. Кристаллизация характеризуется диссимметризацией жидко­сти, если возникающий кристалл по сравнению с жидкостью об­ладает меньшим количеством элементов симметрии. Сам тип диссимметризации существенно зависит от внешних условий (от температуры, давления, силы тяжести и т. д.). Например, для од­ного и того же вещества - углерода в зависимости от условий возможны различные типы симметрии кристаллов. Но переход от жидкости к кристаллу связан с увеличением информационного содержания системы [104]. Следовательно, в данном случае процессы диссимметризации и увеличения количества информации отра­жают взаимосвязанные стороны процесса кристаллизации.

В живой природе прогрессивная эволюция также связана с накоплением информации, если рассматривать ее с точки зрения изменения внутреннего разнообразия. Этот процесс в данном отношении может быть охарактеризован и как имеющий тенден­цию к асимметризации [105]. Ив области биологических явлений связь симметрии и информации имеет свою основу в изменении степени тождества и различия.

Взаимосвязь симметрии и информации начинает изучаться и в науках об обществе. Так, в настоящее время учение о сим­метрии и асимметрии используется в психологии и педагогике [106]. Как известно, в этих науках применяются теоретико-информа­ционные методы. Например, в психологии изучается «пропуск­ная способность» зрения, слуха, вкуса (проводятся опыты с раз­личением интенсивности тонов, яркости, оттенков, концентра­ции растворов, цветов зрительных раздражителей и т. д.), «про­пускная способность» и принципы переработки информации мозгом, процессы восприятия образов, хранение информации в памяти и т. д. По-видимому, именно в психологии появились первые работы, в которых сознательно использовалась связь симметрии и информации. Упомянутая связь служила исходным пунктом для изучения памяти известным американским психо­логом Ф. Эттнивом (исследовались представления о предметах в различной степени симметричных). Как отмечает Ф. Эттнив, «эффекты симметрии ассоциировались с уменьшением количе - ства информации» [107].

К сожалению, проблема симметрии в науках об обществе исследуется еще недостаточно. Однако это не может служить основанием для вывода о том, что в обществе нет явлений сим­метрии и асимметрии. В ряде работ по симметрии приводится достаточно примеров использования явлений симметрии и асимметрии в технике, архитектуре, прикладном искусстве

(бордюры, ленты, орнаменты и т. п.) и других сферах человече-

****

ской деятельности .

Рассмотрим кратко проблему связи симметрии и информа­ции в познании. Принцип симметрии (и его частный случай - принцип инвариантности как симметрии законов) - необходимое условие процесса познания физических явлений. Например, за­коны классической механики связаны с симметрией относитель­но преобразований Галилея, законы релятивистской механики - с симметрией относительно преобразований Лоренца и т. д. Принцип симметрии, по-видимому, является необходимым со­ставляющим всякого познания, хотя и не во всех науках он полу­чил математическое выражение.

В философском отношении важно выявить именно всеобщ­ность принципа симметрии (а если говорить точнее, - принципа диссимметрии) как принципа познания и предсказать тем самым его появление в тех науках, где он в явном, осознанном виде еще не используется. В плане доказательства этого положения заме­тим, что в определенном отношении познание есть выявление законов исследуемых явлений. Но любой закон есть некоторое конкретное тождество в различном. Выделение законов в явле­ниях, тождественного в различном, общего в единичных объек­тах и т. п. есть в определенном аспекте также выявление сим­метричного в диссимметричном.

Вместе с тем этот же процесс есть процесс диссимметри- зации, если рассматривать отношение новых законов, более содержательных, к старым, менее содержательным. Естествен­но, что данное уже познанное единство тождества и различия не учитывает, не выявляет всего разнообразия, различия явлений, а потому в процессе познания заменяется более глубоким един­ством тождества и различия, т. е. тождеством, включающим в себе все новые и новые различия. Стремление выразить в фор­мах научного познания бесконечное различие явлений приводит к процессу диссимметризации, к разработке более совершен­ных теорий, к формулированию качественно новых законов. И хотя самое выражение законов связано с симметрией, во все более общих теориях происходит увеличение элементов дис- симметрии.

Появление, например, новых типов симметрии в физике связано с выявлением диссимметрии во внутренней структуре элементарных объектов [108].

Благодаря выявлению элементов диссимметрии (и выпа­дению элементов симметрии) в теоретических моделях реаль­ных объектов наше познание действительности становит­ся глубже, полнее, адекватнее. Полностью адекватное отраже­ние должно было бы охватить все реальное разнообразие, которое во всех отношениях бесконечно. Процесс познания связан со стремлением к этому абсолюту - бесконечному раз­нообразию.

Таким образом, можно сделать вывод, что в процессе по­знания действуют одновременно две противоположные, соот­носительные тенденции - симметризация и дисеимметризация.

Любой закон, выявленный в процессе познания, есть отра­жение разнообразия и в то же время его ограничение. Он ограни­чивает разнообразие в том смысле, что показывает, какие возмож­ности разрешены, а какие запрещены. Так, из релятивистской ме­ханики известно, что возможны не все скорости, а лишь скорости, не превышающие скорость света, что существуют ограничения

W V» Т"Ч

взаимосвязи между массой и энергией, и т. д. В гносеологическом аспекте ограничение разнообразия сказывается в выделении из бесконечного разнообразия лишь некоторого его количества. Дру­гими словами, субъект в процессе познания воспринимает не все разнообразие, а лишь часть его, так как приходится ограничивать­ся конечными пространственно-временными параметрами, лишь определенными связями объекта со средой и т. д.

Подобное ограничение разнообразия соответствует сим­метризации в процессе познания, поскольку из явления выделя­ется нечто относительно тождественное, т. е. закон. Вместе с тем переход в процессе познания от законов низшего порядка к все более адекватным законам (диссимметризация) означает расши­рение разнообразия. А это есть не что иное, как накопление (рост количества) информации.

Анализируя понятия симметрии и асимметрии, можно сде­лать вывод, что они отражают всеобщие свойства материи и, сле­довательно, постепенно становятся философскими категориями (В. С. Готт, Ю. А. Урманцев, Н. Ф. Овчинников, А. Г. Спиркин [109] и др.). Наряду с этим высказываются возражения против этой точки зрения. Так, В. И. Свидерский [110] полагает, что возведение понятий симметрии и асимметрии в ранг философских катего­рий неоправданно, так как не доказана их применимость, в ча­стности, в сфере общественных явлений. Это не совсем так. Во-первых, понятия симметрии и асимметрии, как отмечалось, уже начинают использоваться и при изучении общественных явлений. Во-вторых, применимость понятий симметрии и асимметрии на общественной ступени развития следует и из весьма общих установленных выше положений. Ведь тождест­во и различие, на которых основано самое общее понятие сим­метрии, имеют место и в сфере общественных явлений.

В. И. Свидерский отмечает, что свойства симметрии связаны с однородностью, одинаковостью, а асимметрии - с неоднород-

*** т т

ностью, неодинаковостью . Но однородность, одинаковость, как и их противоположности, также присущи общественным явлениям.

Теория информации уже внедряется в общественные нау­ки - психологию, лингвистику, экономику, юриспруденцию, пе­дагогику и т. д. Следовательно, здесь может быть применено и учение о симметрии. Объективная причина слабого использова­ния понятия симметрии (и асимметрии) и связанного с ними ма­тематического аппарата в общественных науках сопряжена, как нам думается, с еще слабым применением в них математики (по­скольку общественные явления сложнее биологических, а тем более химических и физических).

Поскольку симметрия, асимметрия и информация являют­ся определенными сторонами тождества и различия, а послед­ние неразрывно связаны, можно говорить и о взаимосвязи, взаимопроникновении симметрии, асимметрии и информации. Представляется, что эта взаимосвязь и взаимопроникновение есть одна из сторон единства всеобщих свойств материи (атри­бутов) [111].

Связь информации и симметрии (асимметрии) приводит к выводу о том, что явления симметризации, диссимметризации и процессы изменения количества информации в различных областях действительности, возможно, имеют одинаковые спе­цифические особенности. Мы уже упоминали о предполагае­мых отличиях информационных процессов в неживой и живой природе и общественных явлениях. В настоящее время иссле­дуется, в частности, реальное отличие проявлений симметрии и асимметрии в мире элементарных частиц, кристаллов и жи­вого вещества. Например, уже выявлена специфика типов сим­метрии живого вещества, что привело даже к возникновению особой науки - биосимметрики (Ю. А. Урманцев и др.). Можно ожидать, что выявление особенностей проявлений симметрии должно указывать на специфику информационных закономер­ностей, и наоборот. Сказанное, конечно, не означает, что не существует общих закономерностей проявления симметрии (асимметрии) и информационных процессов во всех областях действительности.

Взаимосвязь и взаимопроникновение симметрии (асиммет­рии) и информации делают возможным использование общих методов их исследования. Сейчас наиболее распространенным математическим методом исследования симметрии является тео­рия групп. Однако уже в рамках развития теории диссимметрии был сделан вывод о том, что «теория групп... не может полно­стью отразить характер днссимметрии материальных объектов и особенно асимметрических» [112]. Возникла проблема исследования диссимметрии более точными математическими методами. Ю. А. Урманцевым был предложен метод, основанный на ис­пользовании теории конечных множеств (комбинаторики). Это свидетельствует о возможности конкретного использования и методов теории информации, в частности комбинаторного подхода. Более общие соображения, изложенные в этом пара­графе, свидетельствуют о возможности внедрения и статисти­ческой теории информации, и невероятностных подходов к изучению диссимметрии (симметрии и асимметрии). Можно также ожидать и еще более широкого использования методов теории групп в теории информации, и в особенности в теории кодирования.

В заключение остановимся на понятии симметрии в опре­делении понятия вероятности. В первой главе уже упомина­лось о классическом подходе к определению понятия вероят­ности. Считается, что, устанавливая число равновозможных (равновероятных) событий, исходят из соображений сим­метрии, скажем, симметрии двух сторон монеты, симметрии грани куба и т. д. Симметрия в этом случае выступает как не­что первичное по отношению к вероятности, как нечто вполне очевидное, интуитивно данное. Когда речь идет о симметрии монеты, игральной кости и т. д., то можно, конечно, иметь в виду, что стороны монеты, грани кости не отличаются друг от друга и могут быть совмещены друг с другом в результате оп­ределенных преобразований. Но они тождественны лишь в не­котором отношении, в других же отношениях они различны (например, всегда различно их пространственное положение). Поэтому, несмотря на конкретное тождество, мы все же можем отличить одну сторону монеты от другой, одну грань играль­ной кости от другой. Определяя далее вероятность выпадения определенной грани (стороны монеты) мы обращаем внимание уже на количество этих граней, сторон, то есть опять-таки на их разнообразие.

Однако это разнообразие не рассматривается как разнооб­разие преобразований, соответствующих данному типу симмет­рии. Если бы здесь были важны преобразования, то применялась бы теория групп для определения вероятности. В действитель­ности же вероятности определяются не из теоретико-групповых соображений, а из соображений теории конечных множеств (комбинаторики). Следовательно, хотя в теории вероятностей ис­ходят из соображений симметрии, но они не являются жестко привязанными к теории групп.

Понятие симметрии может быть использовано, конечно, для рассмотрения не только классического, но и статистическо­го подхода к определению понятия вероятности. Подобно тому как в физике нарушение данного типа симметрии обычно ведет к поиску других, более общих групп симметрии, и в теории ве­роятностей нарушение условий симметрии классического под­хода привело к возникновению нового - частотного (статисти­ческого) подхода. Здесь имеется в виду нарушение симметрии, выражающей равновозможность (равновероятность) событий, в результате, например, действия возмущений в процессе ис­пытаний, неравномерного распределения материала игральной кости и т. д.

Рассмотренный пример связи симметрии и вероятности еще раз подтверждает взаимосвязь свойств симметрии и ин­формации, вытекающую из взаимоотношения тождества и раз­личия, и показывает возможность применения теоретико­вероятностных и теоретико-информационных методов в уче­нии о симметрии.

<< | >>
Источник: Урсул, А. Д.. Природа информации: философский очерк /А. Д. Урсул; Челяб. гос. акад. культуры и искусств; Науч.-образоват. центр «Информационное общество»; Рос. гос. торгово-эконом. ун-т; Центр исслед. глоб. процессов и устойчивого развития. - 2-е изд. - Челя­бинск,2010. - 231 с.. 2010

Еще по теме § 12. Симметрия, асимметрия и информация: