<<
>>

Разделение понятия

§ 13. В содержании многих понятий мы можем найти такой существенный признак, который может изменяться по определённому принципу или правилу. Например, в содержании понятия «угол» может изменяться признак, выражающий отношение его к прямому углу.

Всякий данный угол имеет известную величину, и потому в понятии всякого угла имеется признак известной величины этого угла. Но мы можем представить себе эту величину изменяющейся относительно прямого угла.

Тогда в одних углах эта величина будет меньше прямого угла, в других— равна прямому и в третьих — больше прямого.

/ Совершенно очевидно, что каждому изменению признака в содержании понятия во всех трёх указанных случаях будет соответствовать известная часть объёма понятия «угол». Одну часть этого объёма займут острые углы, другую — прямые и третью — тупые. А так как других случаев изменения величины угла не предполагается, то очевидно, что при таком изменении признака, величины угла мы разделим весь объём понятия угла только на три части.

При этом каждая часть объёма будет соответствовать одному из трёх возможных случаев изменения величины угла, а все три части объёма в своей сумме исчерпают весь объём понятия «угол».

Логический приём, посредством которого мы делим весь этот объём на части, или на виды, называется делением понятия.

Понятие, объём которого выясняется при посредстве деления, называется «делимыми. Виды или видовые понятия, на которые разделяется объём делимого, называются членами деления.

§ 14. Объём одного и того же родового понятия может быть разделён на виды не одним единственным способом. Какие именно виды получатся в результате деления понятия, зависит от того, по какому признаку производится само деление. Так, объём понятия «треугольник» может быть разделён на виды различным образом — в зависимости от того, будем ли мы рассматривать различая между треугольниками по величине их углов или по относительной величине сторон.

В первом случае, руководясь различиями по величине углов, мы найдём, что весь объём понятия «треугольник» делится на видовые объёмы прямоугольных, остроугольных и тупоугольных треугольников. Во втором случае, принимая во внимание относительную величину сторон, мы найдём, что тот же объём понятия «треугольник» разделится на видовые объёмы разносторонних, равнобедренных и равносторонних треугольников.

Признак (или группа признаков), по изменению которого мы можем разделить объём родового понятия на виды, называется основанием деления.

§ 15. Разделение понятий играет важную роль в логическом мышлении. Особенно велика его роль в науке и научном мышлении. Разделение — если оно правильно произведено, — во- первых, точно выясняя объём понятия, раскрывает соотношение между видами, принадлежащими к одному и тому же роду, и соотношение между подвидами каждого вида.

Во-вторых, разделение объёма понятия применяется, как мы увидим ниже, в качестве составной части некоторых доказательств.

В-третьих, разделение постоянно применяется — и в щ ак- тической жизни и в науке — при классификации. Классификацией называется такое распределение всех предметов известного класса по разрядам, при котором переход от одного разряда к другому совершается систематически, по определённому правилу, каждый предмет класса попадает в какой-нибудь один из разрядов класса, а сумма всех предметов во всех разрядах оказывается в точности равной сумме всех предметов класса.

Для осуществления всех этих задач деление должно быть правильным, а для этого требуется строго выполнять три следующих необходимых условия.

§ 16. Первое условие правильного деления состоит в том, чтобы каждое данное деление производилось по одному и тому же основанию. Хотя объём одного и того же понятия может быть разделён на виды, вообще говоря, различным образом, т. е. по различному основанию, однако в каждом отдельном случае деление должно производиться только по одному основанию. Так, объём понятия «треугольник» может быть разделён на виды либо по величине углов, либо по относительной величине сторон.

Но нельзя, начав деление треугольников по признаку величины углов и не закончив этого деления, перескакивать вдруг на деление по признаку относительной величины сторон и продолжать деление по этому — уже другому — основанию. Нельзя также делить людей на худых, толстых и глупых или делить картины на исторические, бытовые, пейзажные и акварельные. Во всех этих примерах одна и та же ошибка: основание деления не одно и то же. Так как в каждом из этих предметов деление производится не по одному и тому же признаку, то у нас не может быть уверенности ни в том, что мы действительно полностью разделили весь объём делимого рода на виды, ни в том, что каждый экземпляр рода попал в результате деления только в один какой-нибудь из видов рода. Так, глупыми могут быть и толстые и худые.

§ 17. Второе условие правильности деления состоит в требовании, чтобы сумма предметов во всех полученных при делег нии видах в точности равнялась сумме предметов разделённого понятия, т. е. чтобы сумма видов исчерпыва4а весь объём родового понятия. При нарушении этого правила деление получается либо слишком узким, либо слишком широким. Так, разделив объём понятия «лес» на виды хвойных и лиственных лесов, мы получим, очевидно, слишком узкое деление, так как кроме хвойных и лиственных лесов4 бывают ещё леса смешанные, т. е: хвойно-лиственные. Здесь сумма объёмов видовых понятий, очевидно, меньше объёма делимого, она не исчерпывает полного объёма делимого и не содержит в себе всех его видов.

Напротив, разделив объём понятия «звёзды» на виды заходящих звёзд, незаходящих звёзд и планет, мы -получим, очевидно, слишком широкое деление, так как планеты не суть звёзды. Здесь вследствие включения планет в число звёзд сумма объёмов видовых понятий оказалась большей сравнительно с объёмом делимого понятия.

§ 18. Третъе условие правильности деления состоит в требовании, чтобы члены деления исключали друг друга. Это значит, что в итоге деления каждый предмет, входящий в объём делимого родового понятия, должен войти в объём какого-либо одного из видовых понятий, но не должен сразу войти в два или в большее число видов.

Иными словами, разделение как результат деления понятия состоит из соподчинённых понятий, т. е. из видов, подчинённых делимому как роду.

Примером нарушения этого правила будет деление рек на судоходные, несудоходные, сплавные и порожистые. В делении этом некоторые члены (сплавные реки и порожистые реки, несудоходные реки и порожистые реки) не исключают друг друга, не являются видами, исключающими друг друга. Это значит, что, производя деление и переходя от одного видового понятия к другому, например от понятия несудоходных рек к понятию порожистых рек, мы ввели в состав этого последнего часть предметов, уже вошедших в состав предыдущего.

§ 19. Из всех возможных ошибок деления самой значительной является ошибка, состоящая в отступлении от прі пятого при делении основания.

И действительно: правильность разделения объёма делимого родового понятия на соподчинённые виды зависит от того, насколько последовательно и систематически будет проводиться нами изменение признака, составляющего основание деления. Так как всякая часть объёма, получающаяся в результате деления родового понятия, определяется известным йзменением признака, входящего в содержание понятия, то всякая ошибка при решении вопроса о принципе, по которому должно происходить изменение этого признака, должна привести к ошибке в результатах деления. Деление, в котором допущена эта ошибка, называется сбивчивым или перекрёстным. Последнее название показывает, что в случае подобного деления одни и те же предметы оказываются одновременно входящими в различные виды. Кто, например, разделит людей на храбрых, трусливых и осторожных, должен согласиться с тем, что осторожными могут оказаться и некоторые храбрые и некоторые трусливые люди.

§ 20. Деление, свободное от логических ошибок, есть далеко не лёгкая задача. Оно легко осуществимо, если признак, по изменению которого производится распределение рода на виды, настолько точен и отчётлив, что все возможные изменения его легко обозримы и могут быть установлены исчерпывающим образом.

В сложных предметах и явлениях природы и общества часто чрезвычайно трудно найти и выделить такое изменение \              64

признаков, которое ставило бы группу предметов, являющиеся известной разновидностью, вне любой другой группы предметов, обладающих другой разновидностью того же самого вида. Можно, например, разделить объём понятия «военный самолёт» на виды в зависимости от назначения самолёта. Тогда объём понятия «военный самолёт» разделится на виды: 1) разведчиков; 2) истребителей; 3) бомбардировщиков; 4) штурмовиков и 5) транспортных самолётов.

Однако это разделение не учитывает того, что один и тот же самолёт может исполнять одновременно два назначения: например, применяться и при штурмовке и при бомбардировке в одно и то же время. Но это значит, что может существовать такой штурмовик, который, входя в разряд штурмовиков, входит одновременно и в разряд бомбардировщиков.

<< | >>
Источник: В.Ф. АСМУС. Логика. ГОСУДАРСТВЕННОЕ ИЗДАТЕЛЬСТВО ПОЛИТИЧЕСКОЙ ЛИТЕРАТУРЫ, 1947, 600с.. 1947

Еще по теме Разделение понятия:

  1. Отношения между понятиями.
  2. Деление объема понятия.
  3. § 41. Разделение понятий, которые группируются вокруг понятия несамостоятельного содержания
  4. § 42. Разделение понятий, которые группируются вокруг понятия вида
  5. § 17. Точное определение-понятий «фрагмент» (Stuck), «момент», «физическая часть», «абстрактное и конкретное»
  6. АНАЛИЗ ОПРЕДЕЛЕНИЙ ПОНЯТИЯ «АДАПТАЦИЯ»
  7. Идея и понятие пространства (%ыда)
  8. Разделение понятия
  9. Открытие понятия
  10. Глава I  ПОНЯТИЕ ИМУЩЕСТВЕННЫХ ОТНОШЕНИЙ
  11. Глава 1. РАЗДЕЛЕНИЕ ВЛАСТЕЙ: ИСТОРИЧЕСКИЙ ОПЫТ РОССИЙСКОЙ ИМПЕРИИ
  12. Значимость понятий «благо императрицы» и «благо подданных» для П.И. Шувалова
  13. Раздел  II. ПРАВО (Общая теория права. Право: общетеоретические понятияи определения)
  14. 115. Понятие и виды государственной службы.
  15. Основные понятия и категории курса «Экономическая теория»
  16. Приложение. Об амфиболии рефлективных понятий, происходящей от смешения эмпирического применения рассудка с трансцендентальным
  17. Понятие как основная форма рационального познания