<<
>>

Элемент и все же не элемент

Среди многочисленных открытий Отто Хана особенное значение имел радиоактивный элемент мезоторий. Это был второй после радия радиоактивный элемент, который можно было получать в заметных количествах промышленным путем.
В качестве исходного материала использовали импортный монацитовый песок. Мезоторий нашел наиболее широкое применение в медицине - как ценный заменитель все более дорожавшего радия: его излучение, как и излучение радия, могло излечивать злокачественные опухоли.

Долгое время врачи не знали, что собственно представляет собой мезоторий, хотя в его действии они и не сомневались. Поэтому Хан опубликовал подробное сообщение "О свойствах мезотория, получаемого в технике, и его дозировке", из которого все заинтересованные лица с удивлением смогли узнать, что новый препарат, собственно говоря, вовсе не является стопроцентной заменой радия. Первооткрыватель мезотория допускал, что в нем обычно содержится 25 % радия "в качестве примеси". Специалисты были поражены, ибо они ценили Хана как первую величину в радиохимии, и потому не могли поверить, что ему не удалось разделить мезоторий и радий.

Давая объяснения в газете "Хемикер цейтунг" от 3 августа 1911 года, Хан указывал, что получение мезотория в чистом виде нельзя осуществить, потому что радий и мезоторий обладают одинаковыми химическими свойствами, однако весьма заметно отличаются своими радиоактивными константами. Поэтому пришлось принять, что они - разные элементы. Однако по химическим свойствам они абсолютно сходны, как если бы являлись одним и тем же элементом. Как объяснить такой факт?

Даже после появления теории радиоактивного распада явление радиоактивности оставалось для многих ученых непонятным, необъяснимым, просто сверхъестественным. Когда Отто Хан в 1907 году на защите своей диссертации говорил о том, что можно обнаружить 10[-10] радиоактивного вещества на основе его излучения, ему не поверил даже всеми уважаемый Эмиль Фишер - первый нобелевский лауреат среди немецких химиков.

Фишер высказал мнение, что, по его убеждению, нет более чувствительного прибора обнаружения, чем.... его собственный нос, который смог бы уловить некоторые вещества в еще меньших количествах. Конечно, не стоило особенно обижаться на критику Эмиля Фишера, ибо обычно он поддерживал и выдвигал работы Хана в Берлинском университете С другой стороны, Хан чувствовал порой, что многие сомневаются в перспективности радиоактивных исследований, даже пытаются их дискредитировать.

Остановимся несколько подробнее на особенно характерном случае, поскольку он весьма наглядно показывает, перед какой дилеммой стояли в то время многие ученые. Мы располагаем дословным описанием этого события - протоколами доклада и дискуссии, происходившего на заседании немецкого Бунзеновского общества по прикладной и физической химии в мае 1907 года в Гамбурге Председательствовал известный физико-химик, профессор Вальтер Нернст. Тема: "Радиоактивность и гипотеза распада атома".

Отто Хан сделал вводный доклад о теории радиоактивного распада и привел примеры последних данных по применению его в науке. Его коллега, венский радиохимик Лерх, дал слушателям иллюстрацию чувствительности радиоактивного излучения: "Количество радиоактивного элемента радия, необходимое для разрядки электроскопа за 1 с, оказывается, составляет 10[-10] г... Если же разделить 1 мг радия на всех живущих в мире людей - около двух миллиардов - то количества вещества, полученного каждым, хватило бы для опадания листочков пяти электроскопов за 1 с".

Это явно произвело впечатление на присутствовавших. Однако тут профессор неорганической химии Тамман, всемирно известный ученый, задал провокационный вопрос: "Меня поразило, что сегодня несколько раз говорилось о том, что эманация относится к благородным газам. Я не могу полностью к этому присоединиться, ибо для всех известных благородных газов до сих пор не было доказано, что они способны как-либо распадаться и могли бы считаться соединениями, а не элементами. Возникает вопрос: являются ли радиоактивные элементы вообще элементами, господа? Судя по тому, что мы знаем, радию нет места в периодической системе...".

Послышались возмущенные возгласы, однако можно было услышать и одобрение, порой легкий смех.

В качестве председательствующего Нернст наконец установил порядок и попытался уладить спор соломоновым решением: "Вся суть в определении.

Можно дать такое определение: элемент, остающийся постоянным по своей массе, является элементом, а элемент претерпевающий радиоактивное превращение, не является элементом". Сегодня мы знаем, что такое обоснование неверно. Ученые, присутствовавшие на Бунзеновском чтении, тоже не слишком спешили согласиться с мнением Нернста.

Вновь взял слово Отто Хан: "Я хотел бы сначала ответить на вопрос о природе радиоактивной эманации. Вообще благородными газами называются такие газы, которые пока не удавалось ввести в реакцию даже с самыми энергичными реагентами. Эманацию радия пропускали над раскаленным магнием, над раскаленной медью, через самые различные реагенты, которые со всеми другими газами, кроме благородных, всегда приводили к образованию соединений. Эманация радия после пропускания через все системы была найдена неизмененной...".

Тамман прервал оратора: "Я все же не отнес бы их к числу благородных газов, ибо благородные газы не претерпевают реакции радиоактивного распада".

"... Вопрос в различии между радиоактивными эманациями и благородными газами,- невозмутимо продолжал д-р Хан,- возникает и отпадает со вторым вопросом профессора Таммана - является ли радий элементом?.. Радий до сих пор считался элементом и считается таковым большинством исследователей, хотя он испускает лучи. Различия между ним и другими элементами только в степени устойчивости. Уран всегда рассматривался как элемент, а он тоже радиоактивен. Есть элементы, которые распадаются за три секунды, а есть такие, которые распадаются за тысячи миллионов лет, как торий и уран".

Во время дискуссии профессор Браунер из Праги предложил свою теорию: "Я представляю себе вопрос таким образом: если могут быть уже мертвые, вымершие элементы, которые более не существуют... почему не может быть короткоживущих элементов, которые когда-то существовали или хотя бы существуют и теперь, но в столь малых количествах, что еще не обнаружены их следы?"

На это Нернст немного насмешливо заметил: "Малоутешительной гипотезе коллеги Браунера о том, что существуют уже вымершие элементы, можно противопоставить более жизнерадостную: отдельные элементы еще не народились".

Хотя это и была шутка, в словах Нернста заключалось зернышко будущей истины.

В оживленной дискуссии на заседании Бунзеновского общества речь зашла об истинно научной проблеме. Обычно открытие новых элементов вызывало воодушевление. Однако обнаружение столь большого числа радиоактивных элементов привело в конце концов к беспомощности и путанице. Причина состояла в том, что радиоактивные элементы уже нельзя было разместить в периодической системе. Оставались еще пустые клетки, но для радиоактивных элементов места больше не было. Их было слишком много. Уже было обнаружено 25 элементов и лишь первые из них - уран, радий, полоний, торий, актиний - нашли свои законные места.

"Меня очень беспокоит вопрос, что же теперь делать со всеми этими радиоактивными элементами в периодической системе..."- высказался профессор Браунер. С ним должны были согласиться все собравшиеся ученые.

Что же, гениально задуманная и многократно подтвержденная периодическая система элементов утратила свою справедливость для радиоактивных элементов? Уж не назревал ли "кризис в химии"? Либо эти новые радиоактивные вещества все же не были элементами? В элементарном характере радиоактивных веществ мало кто сомневался, хотя их превращения и были вначале непонятными. Беспокоило то, что их не удавалось разместить в периодической системе. Большинство открытых радиоактивных элементов распадались очень быстро и всегда образовывались в неизмеримо малых количествах, поэтому нельзя было и думать об определении их атомной массы, этой основы классификации. Несколько лет спустя положение стало еще более безысходным. Сотрудница Хана, физик Лиза Мейтнер, сообщила в сентябре 1909 года на заседании в Зальцбурге о новых продуктах дальнейшего распада. Дебаты грозили стать очень горячими, подобно тем, которые разразились на заседании Бунзеновского общества за два года до этого. Учитывая солидное число полученных радиоактивных элементов, известный физик Генрих Рубенс высказал сомнение: "Очень приятно и радостно, конечно, что семья радия вновь возросла.

Однако со временем это становится немного тревожным и спрашиваешь себя, будет ли это размножение продолжаться?.."

Внести ясность смог бы только новый теоретический фундамент. Разрешить вопрос удалось лишь в 1913 году Фредерику Содди теорией изотопии элементов. Согласно ей, один и тот же элемент может состоять из нескольких разновидностей атомов, а именно изотопов, которые имеют различные атомные массы (массовые числа). Некоторые элементы являются чистыми, то есть состоят только из одного рода атомов с твердо определенной атомной массой. Смешанные элементы, напротив, имеют несколько различных по массе изотопов. Изотопы одного и того же элемента химически неразличимы друг от друга, следовательно, их нельзя разделить химическим путем. Однако у них есть вполне определенные физические различия, которые для радиоактивных элементов проявляются в типе распада и в характерном периоде полураспада. Конечно, теперь уже недостаточно было определения атомной массы, чтобы найти место для элемента в периодической системе. Только с введением для каждого элемента еще одной величины - порядкового номера, позднее названного зарядом ядра, наступил, действительно, "порядок". Водород получил порядковый номер 1, уран как последний элемент - порядковый номер 92, в соответствии с числом электронов в их атоме. Однако оставалось не ясным, почему изотопы одного и того же элемента могут иметь различные массовые числа. Этот вопрос был разъяснен только 20 лет спустя.

Новая теория, которая вскоре была экспериментально подтверждена и дополнена, сразу разрешила имевшиеся проблемы: все открытые в последнее время радиоактивные элементы оказывались разновидностями уже известных элементов. Лишь совсем немногие являлись действительно новыми химическими элементами и, следовательно, могли претендовать на свое место в периодической системе. Радиоактивные эманации были не чем иным, как изотопами благородного газа радона. Радиоторий Хана является изотопом тория с массовым числом 218; открытый им же мезоторий - изотопом радия с массовым числом 228. Следовательно, и радиоторий и мезоторий не представляют собой новых элементов в первоначальном смысле этого слова; это заблуждение простительно, если вспомнить, что теория атома в то время была еще весьма несовершенной.

Было также найдено объяснение неудачам, постигшим попытки разделения радия и мезотория. Этот процесс был попросту обречен на провал, ибо речь шла практически об одном и том же химическом элементе.

<< | >>
Источник: Клаус Гофман. Можно ли сделать золото? Мошенники, обманщики и ученые в истории химических элементов. 1987

Еще по теме Элемент и все же не элемент: