Измерение температуры
Трудно найти человека, во всяком случае в цивилизованных странах, который бы ни разу не измерял температуру тела. Термометр — настолько привычная вещь домашнего обихода, что на него не обращают внимания, И только в случае недомогания мы пристально всматриваемся в ртутный столбик - не повышена ли температура? А ведьтермо- метры появились сравнительно недавно, и в течение нескольких тысячелетий у людей не было не только термометров, но они даже не знали такого понятия, как температура.
Слово это происходит от латинского глагола tempera «соблюдать меру»; соответственно temperamentum у древних римлян означало «соразмерность». А вместо температуры использовали качественные понятия: тепло, холодно, жарко, очень жарко и т. д. Понятия эти весьма относительные: одному человеку в помещении может быть жарко, другому — прохладно (особенно если у него повышена температура).Можно проделать простой эксперимент, показывающий относительность тепловых ощущений человека; этот эксперимент известен уже несколько веков. Поставьте в ряд три кастрюли или глубокие миски. В левую налейте воду погорячее, но такой температуры, чтобы в нее еще можно было опустить руку. Кстати, попробуйте спросить своих знакомых, какая должна быть температура воды, чтобы еще можно было держать в ней руку. Вероятно, некоторые ответят — градусов 60-70 и очень удивятся, если вы скажете им, что если температура воды в кастрюле будет выше 45 °С градусов, то они не смогут опустить в нес руку даже на несколько секунд! В среднюю кастрюлю напейте воду, температура которой близка к 36 °С. так чтобы рука в ней не чувствовала ни холода, ни тепла, А в правую — воду похолоднее (в нее можно добавить несколько кусочков льда из холодильника), а зимой — снега. Конечно, вода не должна быть совершенно ледяной, чтобы не «заморозить» руку. Теперь опустите правую руку в холодную воду, а левую — в горячую, и через 5—10 секунд перенесите обе руки в среднюю кастрюлю.
Ощущение будет необычным: одна рука почувствует явное тепло, другой же будет холодно!«Градусы тепла» научились измерять только в XVII веке. В эти годы уже работали французский философ, математик и физик Рене Декарт (1596—1650). итальянский физик и математик Эванджелиста Торричел- ли (1608—1647), знаменитый итальянский математик, физик и астроном Галилео Галилей (1564-1642), немецкий астроном, физик и математик Иоганн Кеплер (1571—1630), английский химик и физик Роберт Бойль (1627—1691), французский математик, физик и философ Блез Паскаль (1623—1662), выдающийся английский физик, математик и астроном Исаак Ньютон (1642—1727), другие ученые, заложившие основы современной науки. Отличительная черта этой эпохи — изобретение важ-нейших инструментов и проведение с их помощью количественных измерений. Именно переход от умозрительных суждений к эксперименту вызвал бурное развитие науки, продолжающееся по сей день.
Одним из важнейших изобретений XVII века было изобретение термометра. Сначала у него было мало общего с современным термо- 52
Рис. 2.12. Рисунок ич старинной книги с иллюстрацией действия термоскопа
метром. Например, Галилей изобрел термоскоп (рис. 2.12). Галййей взял стеклянную колбочку размером с куриное яйцо и присоединил к ней тонкую стеклянную трубочку длиной около 25 см. Нагрев колбочку руками, он опустил конеп трубки в сосуде водой. Но мере остывания воздуха в колбочке вода частично заполняла трубку. Если колба нагревалась или охлаждалась, легко было заметить, что уровень воды в трубочке меняется. Впоследствии в трубочку стали вводить лишь капельку воды, которая двигалась вверх или вниз в зави-симости ог температуры воздуха. Прибор Галилея реагировал даже на небольшое нагревание или охлаждение колбочки. Но это не был «настоящий» термометр, потому что он реагировал не только на температуру, но и на атмосферное давление: при его повышении капелька волы двигалась в сторону колбочки, а при понижении — к концу трубочки. Причем изменение давления действовало на объем воздуха в колбочке значительно сильнее, чем изменение температуры.
Так что это был «полутермометр полубаромстр». Однако о существовании атмосферного давления в то время ничего не знали.
Рис. 2.13. Покачаны некоторые попытки сделать трубКи первых термометров более компактными
Постепенно прибор Галилея все более совершенствовался. Воду стали подкрашивать, чтобы она была лучше видна, а на трубочку наносили деления, чтобы можно было судить о «степени тепла». Для повышения чувствительности диаметр трубки уменьшили, а ее длину увеличили. Ведь чем тоньше трубка, тем сильнее будет влиять на положение капельки воды температура в колбочке. Ч тобы тонкая длинная грубка не сломалась, ее изгибали - иногда самым причудливым образом (рис. 2.13). По мере того как трубочки термометров становились все более узкими, чувствительность термометров возрастала и наконец повысилась настолько, что стало возможным помещать в колбочки термометров не воздух (его объем очень сильно меняется с температурой), а жидкость, объем которой реагирует на изме- нение температуры незначительно. Например, если нагреть при постоянном давлении I литр воздуха с 20 до 50 "С. его объем увеличится на 10 % — до 1,1л. Если же нагреть с 20 до 50 "С литр воды, ее объем увеличится только на 1 % (до 1,01 л). Но вола при температуре ниже 0 °С замерзнет, и прибор сломается; поэтому вместо воды обычно использовали подкрашенный спирт, который не замерзает даже в самые сильные морозы. Помимо этого спирт расширяется при повы-шении температуры в несколько раз сильнее, чем вода. Объем жидкости от давления практически не зависит, поэтому «термоскоп» стал « н астоя іци м » те р мометром.
Рис. 2.14. Изображения термометров в трудах итальянской Академии опытов (1666)
Больших успехов в изготовлении термометров достигли мастера-стеклодувы из итальянского города Флоренции, где в 1657 году князь Леопольдо Медичи основал Академию опытов. Главное усо-вершенствование состояло в том, что из шара и трубки удаляли воздух, после чего конец трубки герметизировали сургучом. Так впервые удалось полностью избавиться от влияния атмосферного давления, а заодно устранить испарение жидкости из трубочки.
Приборы флорентийских мастеров были настоящими произведениями искусства (рис. 2.14). Их изготовление описано в трудах Академии, изданных в 1667 году: «Прежде всего стеклодув должен изготовить шарик соответствующей величины с припаянной к нему трубкой. Наполнение инструмента жидкостью происходит следующим образом: шарик нагревают и затем сразу погружают открытый коней трубки в спирт. Спирт начинает медленно подниматься по трубке. При помощи воронки с вытянутым тонким носиком спирт доливают в шар. Трубка заранее делится на равные части, причем деления отмечаются белыми бусинами. Затем почти готовый термометр нагревают и, наконец, герметически закрывают его, как только спирт достигнет высшей точки».Обычно бусинами из белой эмали, которые впаивали в разогретую трубку, делили шкалу на И) равных частей. Затем каждый промежуток делили еще на 10 равных частей с помощью девяти бусин из черной или цветной эмали. На длинной спиральной трубке термометра помещали много делений и наблюдали малые изменения температуры. С помо-щью таких термометров флорентийские академики сделали несколько открытий. Они, например, установили, что показание термометра не меняется, когда его шарик погружен в толченый лед, даже если сосуд со льдом помещен в кипящую воду. Ученые не знали, как объяснить это явление и не догадывались, что оно наблюдается при плавлении любого вещества. Сейчас любой школьник знает, что температура смеси воды со льдом будет постоянной (О °С), пока весь лед не растает.
А теперь посмотрите на современный термометр - трубочка, по которой поднимается ртуть или спирт, очень узкая, особенно у медицинского термометра. Такие трубочки называются капиллярами (от латинского слова сарі Has - «волос»). Действительно, некоторые термометры имеют капилляры диаметром несколько сотых долей миллиметра — тоньше человеческого волоса! Эти термометры такие чувствительные, что легко улавливают изменение температуры даже в Ты с я ч н ы е дол и градуса.
Рис. 2.15. Термометр, 1ПШГОНЛЄН- ный в XIX веке, позволял определять.
в соответствии с привычкой владельца темпе-ратуру по Цельсию или Реомюру, з также переходить от одной шкалы к другой#
Ж
Если положить рядом термометры, изготовленные в разное время в разных странах, они могут показать совершенно разные температуры. Например, на одном будет 40°, на другом — 50", на третьем — 122°! Вы, наверное, уже догадались, что это разные градусы. Действительно, когда-то во Франции и в России были распространены термометры со шкалой Реомюра, которая была предложена в 1730 году французским ученым Рене Антуаном Реомюром (1683— 1757). В этом термометре шкала между точками замерзания и кипения волы разделена на 80 частей (рис. 2.15).
В США распространена шкала Фаренгейта, предложенная в 1714 году работавшим в Голландии искусным немецким физиком п стеклодувом Даниэлем Габриэлем Фаренгейтом (1686—1736), который первым начал изготовлять точные термометры, У нас шкала Фаренгейта известна в основном благодаря знаменитому фантастическому рассказу Рея Брэдбери «451" по Фаренгейту». Формула, связывающая шкалу Фаренгейта (F) со шкалой Цельсия, выглядит очень странно: і "г = 9/5(1 °С) + 32. Откуда она взялась? Для калибровки своих термометров Фаренгейт использовал две точки: очень низкую температуру, которую дает смесь мелко колотого льда с солью и которая была принята за нулевую, а также «нормальную» температуру тела человека. Этот интервал он разделил па і 2 частей; это число удобно тем, что оно делится и на 3, и на 4, и на 6, Первоначальные градусы получились у Фаренгейта слишком крупными (каждый градус соответствовал примерно 5 °С). Поэтому со временем Фаренгейт изменил шкалу: интервал между температурами охлаждающей смеси из льда с солью и плавления льда он последовательно пять раз разделил пополам и таким образом получил для плавления льда отметку на 32" выше нулевой (вот откуда в формуле для пересчета градусов Цельсия в градусы Фаренгейта появилось число 2s = 32). По шкале Фаренгейта нормальная температура тела человека равна 98\ а температура кипения воды - 212°.
Теперь становится понят-ным и другое число в формуле для перехода от шкапы Цельсия в шкалу Фаренгейта - это сотая часть интервала между точками кипения воды и плавления льда: (212 - 32)/100 = 9/5. А в рассказе Брэдбери 451 °F — 233 С - это температура, при которой воспламеняется бумага (при чуть более высокой температуре - 236 °С - возгорается сосновая древесина). В научной литературе американцы давно перешли на при-вычную нам стоградусную шкалу. Что же до обывателей, то их мнение образно выразил один фермер, который на вопрос, чем ему не нравится шкала Цельсия, ответил: «Я никогда не поверю, что 40 градусов - это очень жарко. Когда же утром по радио передают, что сейчас в округе плюс десять градусов, то я твердо знаю, что мне надо одеться потеплее, взять лопату и идти отгребать снег от гаража...»А теперь приступим к интересному эксперименту с медицинским термометром. Но прежде следует сказать о его потенциальной опасности, Медицинский термометр знаком каждому с детства и обычно вызывает лишь неприятные ассоциации: ведь как правило мы измеряем температуру только во время недомогания или болезни. У химика же термометр вызывает в основном опасения тем, что содержит ядовитый металл — ртуть. Если термометр разбить и не собрать тщательно всю разлившуюся ртуть (а это очень трудно сделать!), то мельчайшие шарики ртути, закатившиеся в труднодоступные места, будут медленно испаряться, а ее пары, попадая в легкие, задерживаются там и вызывают впоследствии отравление организма. Кстати, по той же причине опасность представляют и лампы дневного света, содержащие ртуть. Некоторым «противоядием» от остатков пролитой ртути может служить регулярное и частое проветривание помещения, снижающее концентрацию паров ртути в воздухе.
Но разве ртуть при комнатной температуре испаряется? Ведь температура кипения ее очень высока — 357 °С. Тем не менее в полностью изолированном помещении, в котором пролита ртуть, в каждом кубическом сантиметре воздуха содержится 30 триллионов атомов ртути, или 13,4 мг/м1, что в 1300 раз больше предельно допустимой концентрации! И вот что еше плохо: поскольку силы притяжения между атомами ртути малы (именно поэтому этот металл жидкий), испаряется ртуть довольно быстро, хотя на первый взгляд кажется, что пролитые капли ртути в течение длительного времени вовсе не уменьшаются 56 в размере. А отсутствие цвета и запаха у паров ртути приводит к тому, что без специальных приборов обнаружить их в воздухе невозможно.
Известен эффектный опыт, доказывающий довольно быстрое испарение ртути (конечно, его можно показывать только в лаборатории). Плотно закрытую маленькую склянку с ртутью устанавливают перед экраном, покрытым специальным составом, который светится под действием ультрафиолетовых лучей (подробнее об этом можно прочитать в главе «Химики разгадывают тайны свечения»). При включении ультрафиолетовой лампы (она располагается перед склянкой) экран начинает ярко и равномерно светиться. Если теперь вытащить пробку, то на экране появляются движущиеся тени, как будто из сосуда с рзутыо идет дым, отбрасывающий эти тени на экран. Объясняется это просто: поднимающиеся из сосуда, почти как дым из трубы, пары ртути задерживают ультрафиолетовые лучи, и в этих местах экран временно не светится.
В последнее время стали появляться электронные термометры, не содержащие ядовитый металл, 11о они пока довольно дороги, и в боль-шинстве домов по-прежнему пользуются ртутными термометрами, конструкция которых доведена до совершенства и не меняется уже многие десятилетия. (Иногда в продаже бывают значительно менее опасные термометры: они очень тонкие, ртути в них мало, а главное — если такой термометр уронить, он разбивается посередине и ртуть не выливается.) Будем надеяться, что вы постараетесь работать аккуратно и термометр не разобьете.
Несмотря на ядовитые свойства ртути, ее используют в термометрах со времен Фаренгейта. Она удобна по многим причинам: не сма-чивает стекло, поэтому отсчет температуры получается более точным; с повышением температуры ртуть расширяется более равномерно, чем другие жидкости, поэтому расстояния между всеми делениями шкалы ртутного термометра одинаковые. Наконец, нагреть ртуть до определенной температуры почти в 30 раз легче, чем воду до той же температуры, поэтому ртутный термометр, помимо прочих достоинств, обладает и малой инерционностью - не надо долго ждать, пока шарик со ртутью примет температуру окружающего воздуха или тела.
Почему же врачи рекомендуют измерять температуру под мышкой не менее пяти минут, а лучше — десять? Ведь термометр может показать правильную температуру уже через полминуты! Но это только в том случае, если между ним и средой имеется очень хороший тепловой контакт, например, когда лабораторным термометром измеряют температуру жидкости; медицинским термометром этого нельзя делать ни в коем случае — если температура воды превысит 42 °С, термометр тут же лопнет! Но вроде между термометром и кожей под мышкой кон- такт довольно тесный.А все дело в том, что поверхность кожи всегда холоднее, чем кровь и внутренние органы. Еше в XIX веке ученые установили, что самое горячее место в теле человека находится в той части печени, где из нее вытекает венозная кровь, температура которой у здорового человека превышает 40 °С. А вот кожа может иметь намного более низкую температуру, например, в области ступней. Поэтому когда руку с термометром под мышкой прижимают к телу, прежде всего должна прогреться сама подмышечная впадина — ее согревает тепло циркулирующей крови. А для этого требуется некоторое время.
Что же интересного может быть в Измерении температуры медицинским термометром? А вот что. Вы никогда не задумывались, почему он «держит» измеренную когда-то температуру - даже если пос-ле измерения прошло много времени? Ведь термометр за окном или в комнате на стене исправно «следит» за температурой окружающего воздуха - столбик подкрашенной жидкости в нем поднимается или опускается при изменении температуры. И дело вовсе не в том, что в этих термометрах вместо ртути — подкрашенный спирт, В лабораториях температуру измеряют чаще всего ртутными термометрами, и когда они просто лежат в ящике лабораторного стола, то показывают температуру воздуха: столбик ртути никогда не «застревает» в них на определенной отметке.
В чем же секрет медицинского термометра? В нем используется принцип разрывания столбика ртути, который после измерения не должен изменять свою длину. Возьмите обыкновенный медицинский термометр и осторожно встряхните его, как всегда это делаете перед измерением температуры (лучше встряхивать термометр над чем- нибудь мягким: диваном, кроватью, в крайнем случае, над ковром — вдруг он случайно выскользнет из руки). Теперь положите термометр на мягкую подстилку на столе (подальше от края) и при хорошем освещении.внимательно посмотрите на него в сильную луну. Вы увидите, что от стеклянного баллончика с ртутью отходит узкая трубочка с очень тонким внутренним каналом — капилляром; конец этой трубочки припаян к внешнему стеклянному баллону. Канал внутри трубочки настолько тонкий, что трубочка сама сделана в виде увеличительного стекіа, чтобы лучше разглядеть столбик ртути. В самом же начале капилляра в стекле сделана перетяжка — самое узкое место капала. Через эту перетяжку ртуть сама перетечь в основной канал не может, как не может она и вернуться назад. Что же происходит при измерении температуры?
Внимательно посмотрите через лупу на перетяжку и одновременно очень осторожно нагревайте пальцами свободной руки баллончик с ртутью — но ни в коем случае не горячей водой или горячим пред- метом! Перед бами предстанет удивительное зрелище: в отличие от других, не медицинских, термометров, ртуть поступает в очень тонкий капилляр из резервуара не равномерно, а скачками, периодически «выстреливая» в него через перетяжку мельчайшими капельками. Заставляет ее это делать повышение давления в резервуаре при подъеме температуры. В отсутствие давления ртуть сама через перетяжку пройти не может. Поэтому когда термометр вынимают из-под мышки, резервуар начинает охлаждаться, столбик ртути в месте перетяжки разрывается, и часть ее остается в капилляре — ровно столько, сколько ее там было во время измерения температуры. Резко встряхивая термометр, мы сообщаем столбику ртути ускорение, в десятки раз превышающее нормальное ускорение Силы тяжести. Развиваемое при этом давление «загоняет» ртуть через перетяжку обратно в резервуар. Так что наш маленький медицинский термометр — настоящее чудо техники! Кстати «знатоки» из телевизионной передачи «Что? Где? Когда?» не смогли ответить на вопрос, почему показание медицинского термометра не изменяется после измерения температуры.
Жители средней полосы России и тем более ее южных областей не всегда знают, что ртутный термометр может отказать в трескучие зимние морозы, которые случаются в северо-восточной части нашей страны. Получается так потому, что при температуре ниже —38,9 °С ртуть замерзает. Это явление впервые наблюдал в Иркутске при сильном морозе в 1736 году французский астроном и географ Жозеф Никола Дед иль (I6S8-1768). При основании Российской академии наук в 1725 году Делиль был приглашен в Петербург на место директора астрономической обсерватории и прожил в России до 1747 года. В Сибирь он ез-дил с научной целью - для наблюдения за прохождением Меркурия перед диском Солнца и для определения географического положения некоторых населенных пунктов. Искусственно же заморозить ртуть с помошью охлаждающей смеси (из льда и концентрированной азотной кислоты) удалось лишь в 1759 году другому петербургскому академику Иосифу Адаму Брауну (1712-1768); его пригласили в Российскую академию в 1746 году. Браун обнаружил, что твердую ртуть можно ковать, как обычные металлы; он написал также много статей по физике и метеорологии.
Здесь уместно сказать, какие же морозы бывают на Земле. Много лет самой низкой температурой у земной поверхности считалась температура, которую наблюдали в августе I960 года в районе советской антарктической станции «Восток», расположенной на высоте.3488 м над уровнем моря (78° 28' южной широты, 106" 48' восточной долготы), —88,3 °С. Этот рекорд был побит в разгар зимы 21 июля I9S3 года на той же станции «Восток»: -89,2 "С.
В Северном же полушарии «полюсом холода» считается район Оймякона {город в верховьях реки Индигирки в Якутии). В феврале 1933 года в Ой м я коне температура воздуха понизилась до —67,7 °С, а температура снега составила -69,6 °С. Очень сильные холода бывают также в Верхоянске - городе на реке Яне, к северо-западу от Оймякона. В феврале 1892 года там была зафиксирована температура —69 "С. В Оймяконе в тот год измерения не проводились, однако обычно в самые холодные ночи там на два градуса холоднее, чем в Верхоянске, Поэтому считается, что когда в Верхоянске было —69 °С, в Оймяконе должно было быть —71 °С! В этих местах фиксируется й самая большая в мире годовая амплитуда температур, которая даже вошла в Книгу рекордов Гиннеса: 106„7 °С {от —70 до +36,7 °С), в районе Верхоянска.
Ниже 50 градусов в России бывает в Якутии, Красноярском крае, Томской и Магаданской областях. Но не только Россия славится холодами, при которых замерзает ртуть в термометрах. В феврале 1947 года в Канаде {станния «Снэг») была зафиксирована температура —62,8 °С. В январе 1971 года в горах Эндикотт (Аляска) было —62,1 °С. Ниже —50"Стемпература бывает в США — в штатах Монтана, Колорадо, Айдахо, Сев. Дакота, Вайоминг. В Швеции и Норвегии также можетбыть ниже -50"С.
Если надо измерять такие низкие температуры, вместо ртути можно использовать некоторые ее сплавы. Например, сплав ртути с 8,5 % редкого металла таллия не замерзает до —60 "С; этот сплав предложил академик Николай Семенович Курпаков (1860—1941). Для измерения низких температур широко используют также органические соединения - петролейний эфир, керосин, толуол, спирт. Такими жидкостями заменяют ртуть в бытовых термометрах, не требующих высокой'точ-ности. Термометром, заполненным спиртом, можно измерять температуры от —100 до +75 °С. При более низкой температуре спирт становится вязким, что затрудняет измерения.
При измерении высоких температур появляются другие проблемы. При температурах более +200 °С ртуть начинает интенсивно испаряться (кипитона при +357 °С) и конденсироваться в верхней части капилляра. Однако есть ртутные термометры, позволяющие измерять температуру до +600 °С. В них над ртутью под большим давлением (порядка 30 атм) находится инертный газ, не дающий ртути закипеть даже при очень высокой температуре.
Разновидностей лабораторных термометров очень много. Некоторые из них предназначены не столько для измерения температуры, сколько для ее поддержания в заданных пределах в том или ином приборе. Так. уже упоминавшийся электроконтактный термометр
t
I
IB
¦I
Рис. 2.16. Элекгро- контак'тный термометр и магнитная муфта к нему
(рис. 2.16) автоматически вшпочает или выключает какой-либо прибор при достижении определенной температуры. Внутри капилляра этого термометра с помощью магнитной муфты перемещается тоненькая, диаметром О, I мм. вольфрамовая проволочка. Нижний конец ее устанавливают на температуру, которую нужно поддерживать постоянной, вращая магнит в ту или иную сторону. В нижнюю часть капилляра впаян второй (неподвижный) платиновый контакт, который всегда погружен в ртуть. Термометр соединяют среде, которое управляет, например, нагревателем термостата. Как только поднимающийся ртутный столбик коснется вольфрамовой проволочки, электрическая цепь замкнется и реле выключит нагреватель. Когда жидкость в термостате чуть охладится, ртуть в капилляре опустится, разрывая контакт, и реле вновь включит нагреватель.
Рис. 2.17. Макс мм ал ь- но-ми н имальеый термометр
Иногда, например, на автоматической метеорологической станции, куда люди приходят редко, устанавливают максимально-минимальный термометр. Его особенность в том. что он может показывать самую высокую и самую ни s кую температуру за тот промежуток времени, когда его не трогали (рис. 2.17). Работает он так. В нижней части U-образного капилляра находится столбик ртути (поскольку ртути в приборе мало, изменением ее объема при изменении температуры можно пренебречь), А рабочим телом в термометре, которое и реагирует на изменения температуры, служит бесцветная органическая жидкость, основной объем которой находится в широкой пробирке. С обеих сторон в капилляр помешены миниатюрные ползунки из синего стекла. При повышении температуры расширяющаяся жидкость давит на ртутный столбик и перемещает его гак, что правый мениск поднимается, толкая
при этом правый ползунок вверх, а левый — опускается (обратите внимание на перевернутую шкалу слева). При понижении температуры РТУТЬ перемещается в обратном направлении, толкая вверх л С вы и ползунок. тогда как правый остается на месте. Таким образом, оба ползунка могут двигаться только вверх и показывать самую высокую и самую низкую температуру, которая отмечалась прибором (в данном случае +28 и +14 °С — такие температуры были в течение года в квартире.? в которой висел этот термометр), Встряхивая термометр, можно установить оба ползунка в позицию, соответствующую показанию термометра в данный момент {на рисунке — около +24 "С), при этом ползунки упрутся в ртутные столбики.
Заканчивая небольшую экскурсию в мир стеклянных термометров, трудно удержаться, чтобы не продемонстрировать среди них великана и карлика (рис. 2.18). У маленького термометра Аншютиа - он назван
Рис. 2.18, Терм оме і ры Аншютца н Бекмана
по имени немецкого химика Рихарда Аншютца (1852-1937)- вверху припаян стеклянный шарик, за который его лег-ко подвесить на ниточке в нужной части аппаратуры. Огромным кажется рядом с ним термометр, изобретенный немецким химиком Эрнстом Отто Бскманом (1853— 1923). Это так называемый метастатический термометр переменного наполнения. За этими мудреными словами скрывается вот что. Термометр предназначен для определений не самой температуры, а лишь ее изменения в небольшом интервале — зато с очень высокой точностью. Это требуется, когда анализируют вещество по повышению температуры кипения или по понижению температуры плавления его раствора. В термометре Бекмана две шкалы: большая основная, длиной более полуметра, соответствует изменению температуры всею на 5 "С, что позволяет разместить на ней 600 деле-
Ї
- "^^НЛ^^НВ^Ш НШ1 Чі-рсз 0.01 °С. (С помошыо увеличи-
тельного стекла можно повысить точность
отсчета до 0,001 °С!) Нужный диапазон
gppMfffl |И|ЧН измерений — в любом интервале от —20 \ кЩ^^ЩЕШ! до + 150 °С — устанавливают, отливая часть ртути из большого резервуара внизу в петлеобразный запасной резервуар вверху, либо наоборот. Делается такая операция путем переворачивания термометра и легкого его встряхивания.
В последние годы жидкостные термо-
, ,„ _ , метры все увереннее вытесняются элек-
Рис. 2.19, электронный ТЄПМО- " , _ „
показывающий, что тронными приоорами (рис. 2.19). Они
перапура жидкости в стакане и безопаснее (ие содержат ртути), И точ-
равиа +77,3 'С нее, и позволяют измерять температуру
там, где обычный термометр бесполезен (например, в живой клетке). Вместо шарика с ртутью в таком приборе небольшой датчик - термочувствительный элемент, занимающий очень малый объем. Если его нагреть (или охладить), на выходе появится небольшое электрическое напряжение, которое можно измерить и таким образом определить температуру.
Сравнительно недавно появились «одноразовые термометры», предназначенные для измерения температуры... жареной котлеты! Известно, что многие пищевые оп равления происходят из-за бактериальной зараженности продуктов, особенно скоропортящихся. И рыба, и мясо - прекрасная питательная среда для многих микроорганизмов, которые могут при благоприятных условиях размножаться с огромной скоростью. Дня размножения патогенных микробов существует оптимальная температура. При низких температурах бактерии растут очень медленно, а прн высоких они гибнут.
Единственный надежный способ обеззараживания долго хранившихся пищевых продуктов тепловая обработка. Так. температурная обработка молока предусматривает либо пастеризацию в течение получаса при +62... +65 °С, либо кратковременную (10—20 секунд) обработку прн +71... +74 °С, при которой уничтожаются почти все микроорганизмы, либо достаточно длительную стерилизацию при +115 °С, при которой гибнут все патогенные микроорганизмы н их споры. Когда-то нередки были вспышки инфекционных заболеваний, вызванных потреблением зараженного молока (туберкулез, бруцеллез, дизентерия и др.). С потреблением зараженного мяса связаны различные глист-ные заболевания — гельминтозы и инфекционные болезни.
Перед употреблением многие продукты обязательно подвергаются тепловой обработке. Выдерживание продуктов при +60... +65 °С в течение 5-15 минут полностью убивает возбудителей бруцеллеза и яшура. При этом не только гибнут микроорганизмы, но изменяется состав продуктов. Уже при +60... +70 °С начинаются химические превращения белков, что облегчает их усвоение. Не рекомендуется есть и сырые куриные яйца (а утиные - категорически запрещено). Яйца нередко заражены сальмонеллами, которые вызывают тяжелые пищевые отравления. Для безопасности сырые куриные яйца надо нагреть примерно до +70 °С (при этом они фактически остаются сырыми). Поэтому кулинарная обработка мяса, птицы, рыбы совершенно необходима.
Как же узнать, что гамбургер или куриные ножки прогрелись в духовке или микроволновой печи в достаточной степени? Для этого существуют различные термометры, втом числе электронные, но они довольно дорогие. Альтернативой могут служить дешевые одноразовые? термометры (рис. 2.20). Такой термометр представляет собой небольшую картонную пластинку, на кончике которой находится маленький термочувствительный индикатор — белый прямоугольничек размером
Рис. 2.20, «Бумажный термометр» в действии
примерно 6x4 мм. Достаточно всего на пять секунд поместить кончик индикатора в подогреваемый продукт, чтобы определить, хорошо ли он прогрелся. Если индикатор остался белым, нагрев следует продолжить, пока пластинка не почернеет. Почернение пластин рай указывает на то, что требуемая температура достигнута. Для каждого вида продукта существует свой индикатор, цвет которого меняется только прн достижении определенной температуры: для рыбы — это индикатор на +60 °С; для гамбургера, мясного фарша, свинины или яиц в кастрюле с водой — на +71 °С, для цыплячьих грудок —на +77 °С И т. д.
Как же устроен такой необычный «термометр»? Его кончик, который и измеряет температуру, герметично покрыт безвредной полимерной пленкой. Под этой прозрачной оболочкой находится белый порошок, а под ним — черный картон. При достижении определенной температуры белый порошок быстро плавится и становится видна черная подложка (рис. 2.21). Все просто. Для каждой температуры подобрано безвредное вещество, ко- Рис. 2.21. Новая полоска (а), термочувст- торос плавится при данной тем- вительный индикатор нагрет до начала пературе. Точность определения плавления (вещество расплавилось не темПературы таким «прибором» - полностью) (б), новая полоска со сия- „ , „_
тым покрытием («) примерно 0,5 С.