Задать вопрос юристу

2.4.2. Классификация предикатов

Определение. Предикат Р(х1, х2, …, хn), заданный на множествах М1, М2, …, Мn, называется: тождественно-истинным, если при любой подстановке вместо переменных х1, х2, …, хn любых конкретных предметов а1, а2, …, аn из множеств М1, М2, …, Мn соответственно он превращается в истинное высказывание Р(а1, а2, …, аn); тождественно-ложным, если при любой подстановке вместо переменных х1, х2, …, хn любых конкретных предметов из множеств М1, М2, …, Мn соответственно он превращается в ложное высказывание; выполнимым (опровержимым), если существует, по крайней мере, один набор конкретных предметов, при подстановке которого вместо соответствующих переменных в предикат, последний обращается в истинное (ложное) высказывание.

С точки зрения множества истинности предиката истинны следующее утверждение.

Утверждение. Если предикат Р(х1, х2, …, хn), заданный на множествах М1, М2, …, Мn является тождественно-истинным, то его множество истинности Р+ = М1 ´ М2´ …´ Мn. Если предикат Р(х1, х2, …, хn), заданный на множествах М1, М2, …, Мn является тождественно-ложным, то его множество истинности Р+ = ?. Если предикат Р(х1, х2, …, хn), заданный на множествах М1, М2, …, Мn является выполнимым, то его множество истинности Р+? ?. Если предикат Р(х1, х2, …, хn), заданный на множествах М1, М2, …, Мn является опровержимым, то его множество истинности Р+? М1 ´ М2´ …´ Мn.

Определение. Два n-местных предиката Р(х1, х2, …, хn) и Q(х1, х2, …, хn), заданных над одними и теми же множествами М1, М2, …, Мn, называются равносильными, если набор элементов превращает первый предикат в истинное высказывание Р(а1, а2, …, аn) в том и только в том случае, когда этот набор превращает в истинное высказывание Q(а1, а2, …, аn) второй предикат.

Утверждение о равносильности двух предикатов P и Q символически будем записывать так: P Û Q.

Пример.

Необходимо решить уравнение (или, другими словами, найти множество истинности предиката): 4х – 2 = -3х – 9.

Решение.

Делая равносильные преобразования, найдем множество истинности предиката:

4х – 2 = -3х – 9 Û 4х + 3х = -9 + 2 Û х = -1.

Определение. Предикат Q(х1, х2, …, хn), заданный над множествами М1, М2, …, Мn, называется следствием предиката Р(х1, х2, …, хn), заданного над теми же множествами, если он превращается в истинное высказывание на всех наборах значений предметных переменных на соответствующих множествах, на которых в истинное высказывание превращается предикат Q(х1, х2, …, хn).

Другими словами (в терминах множеств истинности), можно сказать, что предикат Q является следствием предиката Р тогда и только тогда, когда Р+ I Q+.

Теорема. Каждые два тождественно истинных (тождественно ложных)предиката, заданных на одних и тех же множествах, равносильны. Обратно, всякий предикат, равносильный тождественно истинному (тождественно ложному) предикату, сам является тождественно истинным (тождественно ложным) предикатом.

Теорема. Каждый тождественно истинный n-местный предикат является следствием любого другого n-местного предиката, определенного на тех же множествах. Каждый n-местный предикат является следствием любого тождественно ложного n-местного предиката, определенного на тех же множествах.

<< | >>
Источник: Лекции - Дискретная математика. 2016

Еще по теме 2.4.2. Классификация предикатов:

  1. 2.4.8. Классификация формул логики предикатов
  2. §4. Алгебра предикатов. Логические операции над предикатами
  3. Предикат и актанты. Типы предикатов и актантов
  4. 4.1 Определение предиката.
  5. Исчисление предикатов.
  6. Противопоставление предикату
  7. Риторические предикаты
  8. 2.4.3. Логические операции над предикатами
  9. Глава 7. Начала логики предикатов
  10. ЛОГИКА ПРЕДИКАТОВ
  11. 2.4.4. Кванторные операции над предикатами
  12. § 33. Семантический предикат. Предикатная лексика
  13. Глава 49 Субъект и предикат
  14. 2.4.1. Основные понятия, связанные с предикатами
  15. 3.2. Исчисление предикатов
  16. Отношение между субъектом и предикатом суждения