<<
>>

  ПРАВИЛО IV  

Для разыскания истины вещей необходим метод.

Смертными владеет любопытство настолько слепое, что часто они ведут свои умы по неизведанным путям без всякого основания для надежды, но только для того, чтобы проверить, не лежит ли там то, чего они ищут; как если бы кто загорелся настолько безрассудным желанием найти сокровище, что беспрерывно бродил бы по дорогам, вы&сматривая, не найдет ли он случайно какое-нибудь сокро&вище, потерянное путником.

Точно так же упражняются почти все химики, большинство геометров и немало фило&софов; я, правда, не отрицаю, что они иногда блуждают до такой степени удачно, что находят нечто истинное, однако я признаю по этой причине не то, что они более усердны, а лишь то, что они более удачливы. Но гораздо лучше ни&когда не думать об отыскании истины какой бы то ни было вещи, чем делать это без метода: ведь совершенно несом&ненно, что вследствие беспорядочных занятий такого рода и неясных размышлений рассеивается естественный свет и ослепляются умы; и у всех тех, кто привык таким обра&зом бродить во мраке, настолько ослабляется острота зре&ния, что впоследствии они не могут переносить яркого света; это подтверждается и на опыте, так как очень часто мы видим, что те, кто никогда не утруждал себя науками, судят о встречающихся вещах гораздо более основательно и ясно, чем те, кто все свое время проводил в школах. Под методом же я разумею достоверные и легкие правила, строго соблюдая которые человек никогда не примет ни&чего ложного за истинное и, не затрачивая напрасно ни&какого усилия ума, но постоянно шаг за шагом приумно&жая знание, придет к истинному познанию всего того, что он будет способен познать.

Здесь же следует отметить два пункта: не принимать безусловно ничего ложного за истинное и достигать позна&ния всех вещей, ибо если мы не знаем какую-либо вещь из тех, которые мы можем знать, то лишь потому, что мы никогда не замечали никакого пути, который вел бы нас к такому познанию, или потому, что мы впали в противо&положное заблуждение.

Но если метод правильно объяс&няет, каким образом следует пользоваться интуицией ума, чтобы не впасть в заблуждение, противное истине, и ка&ким образом следует отыскивать дедуктивные выводы, чтобы прийти к познанию всех вещей, то, мне кажется, для того чтобы он был совершенным, не нужно ничего дру&гого, поскольку невозможно приобрести никакого знания, кроме как посредством интуиции ума или дедукции, как уже было сказано раньше. Ведь он не может простттрать- ся и до того, чтобы указывать, каким образом следует со&вершать эти действия, ибо они являются первичными п самыми простыми из всех, так что, если бы наш разум не мог пользоваться ими уже раньше, он не воспринял бы никаких предписаний самого метода, сколь бы легки они ни были. Другие же действия ума, которыми диалектика силится управлять с помощью этих двух первых, здесь бесполезны, или, скорее, их нужно отнести к числу пре&пятствий, так как невозможно прибавить к чистому свету разума ничего, что бы некоторым образом его не помра&чило.

Поскольку же польза от этого метода столь велика, что предаваться без него наукам, кажется, скорее вредно, чем полезно, я легко убеждаюсь в том, что он был некоторым образом постигнут уже прежде более сильными умами, хотя бы под руководством одной лишь природы. Ведь че&ловеческий ум заключает в себе нечто божественное, в чем были посеяны первые семена полезных мыслей, так что часто, как бы они ни были попираемы и стесняемы про&тивными им занятиями, они все-таки производят плод, вызревающий сам собой. Это мы замечаем в самых легких из наук — арифметике и геометрии; в самом деле, для нас достаточно ясно, что древние геометры применяли некий анализ, который они распространяли на решение всевоз&можных проблем, хотя и ревниво утаили его от потомков. И теперь процветает некий род арифметики, называемый алгеброй, который осуществляет в отношении чисел то, что древние делали в отношении фигур. Однако эти две науки являются не чем иным, как появившимися сами собой плодами, вызревшими из врожденных начал дан&ного метода, и я не удивляюсь, что применительно к про&стейшим предметам этих наук они до сих пор развивались более успешно, чем в остальных науках, где их обычно стесняют большие препятствия, но все-таки и там, если их пестовать с величайшей заботливостью, они, без сомнения, смогут достичь полной зрелости.

Это я главным образом и задумал сделать в данном трактате: ведь я не ценил бы высоко эти правила, если бы они были достаточны только для разрешения тех пустых проблем, которыми привыкли развлекаться досужие счет&чики или геометры, ибо я в этом случае полагал бы, что я выделился не чем иным, как тем, что забавлялся пустяка&ми, быть может, более искусно, нежели другие.

И хотя здесь я буду много говорить о фигурах и числах, поскольку ни из каких других дисциплин не могут быть почерпнуты примеры столь же очевидные и столь же достоверные, тем не менее всякий, кто будет внимательно следить за моей мыслью, легко заметит, что ни о чем я не думаю здесь так мало, как об общепринятой математике, но излагаю некую другую дисциплину, такую, что упомянутые науки яв&ляются скорее ее покровом, нежели частями. Ведь эта наука должна содержать в себе первые начала человече&ского рассудка и достигать того, чтобы извлекать истины из какого угодно предмета; и, если говорить откровенно, я убежден, что она превосходит любое другое знание, пере&данное нам людьми, так как она служит источником всех других знаний. О покрове же я сказал не потому, что хо&тел бы укрыть и укутать эту науку, чтобы уберечь ее от толпы, но скорее потому, что хотел бы принарядить и укра&сить ее так, чтоба она могла быть более приемлемой для человеческого ума.

Когда я впервые направил ум на математические дис&циплины, я сразу же перечитал большую часть из того, что обычно передается от авторитетов в этих науках; в особенности я чтил арифметику и геометрию, поскольку, как было сказано, это простейшие из наук, являющиеся как бы путями к остальным. Но ни в той, ни в другой мне тогда, пожалуй, не попались в руки авторы, которые бы меня вполне удовлетворили. Конечно же очень многое из того, что я прочитал у этих авторов касательно чисел, было истинным, как я, проведя расчеты, убедился на опыте; касательно же фигур многое они определенным образом представляли моим глазам и выводили на основании не&которых заключений, но почему это обстояло именно так и каким образом было обнаружено, сами они, по-видимо&му, не показывали уму достаточно хорошо. Поэтому я не. был удивлен, что даже многие из даровитых и образован&ных людей, испробовав эти науки, или быстро бросали их, как ребяческие и пустые, или, напротив, у самого порога отвращались от изучения тех же самых наук, как крайне трудных и запутанных.

И действительно, нет ничего более бессмысленного, чем заниматься голыми числами и вооб&ражаемыми фигурами, так что может показаться, будто мы желаем найти успокоение в познании подобных пустя&ков, и потом настолько предаться тем поверхностным доказательствам, которые обнаруживаются чаще благо&даря случаю, чем искусству, и относятся больше к зрению и воображению, чем к разуму, что мы некоторым образом отучимся пользоваться самим рассудком. В то же время нет ничего более сбивающего с толку, нежели посредством такого способа доказательства освобождаться от новых трудностей, скрытых в путанице чисел. Когда же потом я подумал, откуда же повелось, что некогда первые созда&тели философии не хотели допускать к изучению мудрости кого-либо несведущего в математике, как будто эта дис&циплина казалась им самой легкой из всех и совершенно необходимой для того, чтобы просветить и подготовить умы к освоению других, более возвышенных наук, я впол&не утвердился в подозрении, что они знали некую матема&тику, весьма отличную от общепринятой математики на&шего времени. Не то чтобы я считал, что они знали эту самую науку в совершенстве, ведь их безумные ликова&ния и жертвы, приносимые в благодарность за незначи&тельные открытия, ясно показывают, насколько они были безыскусны. И меня не заставят отказаться от моего мне&ния некоторые их механизмы, которые восхваляются у историков, ибо, хотя эти механизмы, вероятно, были весь&ма просты, их легко можно было превозносить, вплоть до признания их чудесами, невежественной и склонной к изумлению толпе. Но я убежден, что какие-то первые се&мена истин, которые присущи человеческим умам от при&роды и которые мы в себе заглушаем, ежедневно читая и слыша о стольких различных заблуждениях, обладали в той безыскусной и незатейливой древности такою силой, что благодаря тому самому свету ума, при посредстве ко&торого люди видели, что следует предпочитать добродетель удовольствию, а честное — полезному, даже если они и не знали, почему это обстояло именно так, они также познали истинные идеи философии и математики, хотя и не могли еще овладеть в совершенстве самими науками.
И мне по крайней мере кажется, что какие-то следы этой истинной математики обнаруживаются еще у Паппа и Диофанта, которые жили пусть и не в самую раннюю эпоху, но все же за много веков до нашего времени 6. Я поверил бы тому, что ее впоследствии утаили с неким опасным ковар&ством сами авторы; ведь подобно тому, что многие мастера делали, как стало известно, со своими изобретениями, авторы, возможно, опасались, что эта наука, поскольку она была самой легкой и простой, обесценилась бы, став обще&доступной, и вместо нее предпочли показать нам как ре&зультаты своей науки, чтобы удивить нас, кое-какие бес&плодные истины, остроумно доказанные на основании умо&заключений, вместо того чтобы учить самой науке, ко&торая не оставила бы никаких поводов для удивления. Наконец, было несколько даровитейших мужей, которые в наше время попытались воскресить эту самую математи&ку, ибо ничем другим, кажется, не является та наука, ко- торую называют чужеземным именем «алгебра», если бы только она могла быть освобождена от множества чисел и от необъяснимых фигур, которыми она загромождена, таким образом, что не испытывала бы больше недостатка в той высшей ясности и легкости, какая должна быть, как мы предполагаем, в истинной математике. Когда эти мыс&ли обратили меня от частных занятий арифметикой и геометрией к некоему общему исследованию математики, я прежде всего задался вопросом, что же именно подразу&мевают все под этим названием и почему не только уже упомянутые науки, но также астрономия, музыка, опти&ка, механика и многие другие называются частями мате&матики. В данном случае, конечно, недостаточно рассмот&реть происхождение названия, ибо, если бы слово «мате&матика» означало лишь то же самое, что и «дисциплина», (все прочие) дисциплины назывались бы математически&ми с не меньшим правом, чем сама геометрия. Но мы ви&дим, что нет почти ни одного человека, который, если он успел хотя бы ступить на пороги школ, не сумел бы легко различить среди встречающихся ему вещей, что же отно&сится к математике, а что — к другим дисциплинам.
Рас&сматривающему это более внимательно стало бы в конце концов ясно, что к математике относятся лишь все те ве&щи, в которых исследуются какой-либо порядок или мера, и неважно, в числах ли, или фигурах, или звездах, или звуках, в любом ли другом предмете придется отыскивать такую меру; а потому должна существовать некая общая наука, которая, не будучи зависимой ни от какого частно&го предмета, объясняла бы все то, что может быть обнару&жено в связи с порядком и мерой, и эта самая наука долж&на называться не заимствованным именем, а уже сделав&шимся старым, но вновь вошедшим в употребление име&нем всеобщей математики, ибо в ней содержится все то, благодаря чему другие науки и называются частями мате&матики . Насколько же она превосходит в полезности и легкости другие, подчиненные ей науки, видно из того, что она распространяется на все те вещи, на которые рас&пространяются и они, и, сверх того, на многие другие, и, если она заключает в себе какие-то трудности, точно такие же обнаруживаются и в этих науках, которым вдобавок присущи и другие трудности, вытекающие из их частных предметов и ей не свойственные. Отчего же теперь, когда все узнали ее название и понимают, даже не уделяя ей внимания, чем она занимается, происходит так, что многие усердно постигают другие дисциплины, которые от нее зависят, но саму ее никто не старается изучить? Я, конеч&но, удивился бы этому, если бы не знал, что все считают ее слишком легкой, и если бы не заметил уже давно, что человеческие умы, пренебрегая тем, что, как они пола&гают, можно легко (обнаружить), всегда спешат прямо к новым и более внушительным предметам.

Но, сознавая свою слабость, я решил в поисках знания о вещах твердо придерживаться такого порядка, чтобы, всегда начиная с самых простых и легких вещей, никогда не переходить к другим до тех пор, пока мне не покажет&ся, что в самих этих вещах не осталось более ничего из того, к чему следует стремиться. Вот почему, насколько было в моих силах, я до сих пор разрабатывал эту всеобщую математику так, чтобы потом я мог считать себя способ&ным изучать несколько более возвышенные науки с усер&дием, отнюдь не преждевременным. Однако, прежде чем отойти от этого, я попытаюсь собрать воедино и располо&жить по порядку все то, что я нашел весьма достойным внимания в предшествующих занятиях, как для того, что&бы впредь, когда с возрастом ослабеет память, я без труда мог, если потребует необходимость, восстановить это по своей книжке, так и для того, чтобы отныне, освободив память от этих вещей, я мог обратить более свободный ум к другому.

  ПРАВИЛО V

  Весь метод состоит в порядке и расположении тех ве&щей, на которые надо обратить взор ума, чтобы найти какую-либо истину. Мы будем строго придерживаться его, если шаг за шагом сведем запутанные и темные положе&ния к более простым, а затем попытаемся, исходя из усмотрения самых простых, подняться по тем же ступеням к познанию всех прочих.

В одном этом заключается итог всего человеческого усердия, и для желающего приступить к познанию вещей следование данному правилу не менее необходимо, чем нить для Тесея, желающего проникнуть в лабиринт. Од&нако многие или не размышляют над тем, что оно предпи&сывает, или вовсе не знают его, или предполагают, что в нем нет нужды, и часто исследуют труднейшие вопросы настолько беспорядочно, что кажутся мне поступающими точно так же, как если бы они попытались одним прыж&ком преодолеть расстояние от самой нижней части до вер&ха кякого-то здания, пренебрегая ступенями лестницы, предназначенными для этой цели, или не замечая их. Так поступают все астрологи, которые, не зная природы небес и даже не понаблюдав как следует за их движения&ми, надеются, что они смогут определить их воздействия. Так ведет себя большинство тех людей, которые изучают механику отдельно от физики и наугад изготовляют но&вые орудия, приводящие в движение. Таким же образом поступают и те философы, которые, пренебрегая опытами, думают, что истина выйдет из их собственного мозга, слов&но Минерва из головы Юпитера.

И все они очевидно грешат против этого правила. Но так как зачастую порядок, который здесь требуется, яв&ляется настолько темным и запутанным, что не все будут в состоянии узнать, каков же он, то вряд ли кто-либо смо&жет достаточно хорошо оградить себя от заблуждения, если он не будет тщательно соблюдать то, что излагается в следующем правиле.

<< | >>
Источник: Декарт Р.. Сочинения в 2 т.: Пер. с лат. и франц. Т. 1/Сост., ред., вступ, ст. В. В. Соколова.— М.: Мысль,1989.— 654 c.. 1989

Еще по теме   ПРАВИЛО IV  :