<<
>>

1.2 Уравнение связи между физическими величинами

Между физическими величинами существуют качественные и количественные зависимости, закономерная связь, которые могут быть выражены в виде математических формул. Создание формул связано с математическими действиями над физическими величинами.

Однородные величины допускают над собой все виды алгебраических действий. Например, можно складывать длины двух тел; отнимать длину одного тела от длины второго; делить длину одного тела на длину второго; возводить длину в степень. Результат каждого из этих действий имеет определённый физический смысл. Например, разность длин двух тел показывает на сколько длина одного тела больше другой; произведение основания прямоугольника на высоту определяет площадь прямоугольника; третья степень длины ребра куба является его объёмом и т.д.

Но не всегда можно складывать две одноименные величины, например, сумма плотностей двух тел или сумма температур двух тел лишены физического смысла.

Разнородные величины можно умножать и делить друг на друга. Результаты этих действий над разнородными величинами также имеют физический смысл. Например, произведение массы т тела на его ускорение а выражает силу F, под действием которой получено это ускорение, то есть:

; (1.4)

частное от деления силы F на площадь S, на которую равномерно действует сила, выражает давление р, то есть:

. (1.5)

Вообще физическая величина Х с помощью математических действий может быть выражена через другие физические величины А, В, С, ... уравнением вида:

(1.6)

где коэффициент пропорциональности.

Показатели степени могут быть как целым, так и дробными, а также могут принимать значение, равное нулю.

Формулы вида (1.6), которые выражают одни физические величины через другие, называются уравнениями между физическими величинами.

Коэффициент пропорциональности в уравнениях между физическими величинами за редким исключением равен единице. Например, уравнением, в котором коэффициент отличается от единицы, является уравнение кинетической энергии тела при поступательном движении:

. (1.7)

Значение коэффициента пропорциональности как в данной формуле так и вообще в уравнениях между физическими величинами не зависит от выбора единиц измерения, а определяется исключительно характером связи величин, входящих в данное уравнение.

Независимость коэффициента пропорциональности от выбора единиц измерения является характерной особенностью уравнений между величинами. То есть каждый из символов А, В, С, ... в этом уравнении представляет собой одну из конкретных реализаций соответствующей величины, которая не зависит от выбора единицы измерений.

Но если все величины, входящие в уравнение (1.6) разделить на соответствующие единицы измерений, получаем уравнение нового типа. Для простоты рассмотрения напишем следующее уравнение:

. (1.8)

После деления величин Х, А и В на единицы их измерений получаем:

, (1.9)

или

. (1.10)

Уравнения вида (1.9) или (1.10) связывает между собой уже не величины как собирательные понятия, а их численные значения, полученные в результате выражение величин в определённых единицах измерения.

Уравнение, связывающее численные значения величин, называется уравнением между численными значениями.

Например, численное значение теплоты Q, которая выделяется в проводнике при прохождении тока:

, (1.11)

где численное значение теплоты, которая выделяется на проводнике, ккал; численное значение силы тока, А; численное значение сопротивления, Ом; численное значение времени, с.

Только при этих условиях численный коэффициент принимает значение 0,24.

Но при расчётах в технике такими уравнениями пользуются очень широко. Величины выражают в разных системах и внесистемных единицах с получением при этом уравнений со сложными коэффициентами .

Вообще коэффициент пропорциональности в уравнениях между численными значениями зависит только от единиц измерений. Замена единицы измерений одной или нескольких величин, входящих в уравнение (1.9), влечёт за собой изменение численного значения коэффициента.

Зависимость коэффициента пропорциональности от выбора единиц измерения является отличительной особенностью уравнений между численными значениями. Эта характерная особенность между численными значениями используется для определения производных единиц измерений и для построения систем единиц.

<< | >>
Источник: В.Г. Самойлик, А.Н. Корчевский. Теория и техника физического эксперимента при обогащении полезных ископаемых: учебное пособие / В.Г. Самойлик, А.Н. Корчевский.– Донецк: ООО «Технопарк ДонГТУ «УНИТЕХ»,2016. – 205 с.: ил., табл.. 2016

Еще по теме 1.2 Уравнение связи между физическими величинами: