<<
>>

9.Что такое статистическая мощность исследования и от чего она зависит?

Нужно ли исследователю учитывать её при планировании исследования, и

если да, то как это сделать?

Статистическая мощность анализа (1-β): вероятность того, что мы на выборке примем гипотезу H1, если на самом деле она верна (= шанс обнаружить эффект, если он на самом деле есть).

• Размер эффекта, пример: Корреляция между приёмом аспирина и снижением риска сердечного приступа: r = 0.034, r2 = 0.0012. Но это значит, что 34 человека из 1000 могут предотвратить приступ, принимая аспирин.

Статистическая мощность зависит от…

– объёма выборки: чем он больше, тем она выше;

– размера эффекта: чем он сильнее, тем она выше;

– от используемого статистического критерия: для разных статистических критериев, проверяющих одну и ту же гипотезу, она будет разной.

• Является критерием для определения объёма выборки с учётом размера ожидаемого эффекта.

• Важно! Только высокая мощность (0,95 и выше) даёт нам возможность делать достоверный вывод о том, что искомый эффект отсутствует (верна H0).

• При недостаточной статистической мощности подобный вывод является необоснованным (правильный вывод: мы не обнаружили эффект, но не можем сказать, есть он или нет).

Анализ статистической мощности и оценка объема выборки являются важным этапом планирования эксперимента, так как без этих вычислений объем данных может быть слишком большим, либо, напротив, слишком маленьким, чтобы получить надежные результаты. Если объем выборки слишком мал, то у вас имеется небольшая вероятность того, что проведенное вами экспериментальное исследование (массовый опрос и др.) даст надежный результат. Напротив, если объем выборки слишком большой, то время, потраченное на сбор данных и большие финансовые расходы, связанные с этим, не принесут ожидаемого эффекта.

В спец.программах, например во вражеской Statistika есть специальный модуль - Анализ мощности.

Тут доступны графические и аналитические процедуры, позволяющие оценить мощность и объем выборки различных процедур статистического анализа. Эта информация является решающей при проведении экспериментальных исследований, массовых опросов и т.д.

Объяснение:

Назовем исходную гипотезу "нулевая гипотеза" - H0 . Соберем данные. Используя статистическую теорию, видим, что гипотеза H0, вероятно, неверна и должна быть отвергнута.

Отвергая H0, вы обосновываете то, во что действительно верите. Эта ситуация, типичная во многих областях приложения, называется критерий отвержения-принятия - "Reject-Support testing," (RS testing); отвергая нулевую гипотезу, вы подтверждаете теорию.

Нулевая гипотеза либо справедлива, либо ошибочна, и статистическая процедура недвусмысленно указывает на это. Нулевая гипотеза либо отвергается, либо не отвергается. Следовательно, до проведения эксперимента вы постулируете, что имеют место только 4 возможности, показанные ниже:

HO H1
H0 Правильное принятие Ошибка II рода
H1 Ошибка I рода Правильное отвержение

Заметим, что имеются ошибки двух типов, показанные в этой таблице. Авторы многих учебников обычно придерживаются такой точки зрения, что Ошибка I рода должна принимать значение .05 или ниже, тогда как Ошибка II рода должна быть столь малой, насколько это возможно при фиксированном уровне ошибки 1 рода. "Статистическая мощность", которая равна 1 - , соответственно, должна быть максимально высокой.

( у Жени в презентации – 0,95)

Например, в двухгрупповом эксперименте, включающем сравнение средних в двух группах - экспериментальной и контрольной, исследователь верит, что лекарство приносит эффект и ищет подтверждение своим предположениям с помощью критерия, который значимо отвергает нулевую гипотезу, состоящую в том, что эффекта нет (средние равны).

В таком исследовании ошибка II рода является трагедией, потому что теория, которая действительно верна, ошибочно отвергается. Очевидно, мы должны действовать так, чтобы уменьшить эту ошибку, т.е. максимизировать мощность критерия. К сожалению, нельзя одновременно уменьшать обе ошибки, и на практике приходится находить компромисс между ними.

В некоторых случаях просто невозможно иметь дело с очень большими выборками - с такой ситуацией мы сталкиваемся, например, в социальных или психологических исследованиях. В таких задачах исследователи иногда тратят несколько дней на то, чтобы получить интервью одного человека. В результате в течение года можно обследовать 50 субъектов. Корреляционные критерии в таких случаях имеют очень низкую мощность (так как объем выборки слишком мал). В таких случаях лучше взять значение выше .05, тогда требуемая мощность может быть достигнута.

С другой стороны, возможно, мощность оказывается слишком большой. Например, можно проверять гипотезу о равенстве двух средних в популяции (Mu1 = Mu2), основываясь на миллионе наблюдений в каждой из сравниваемых групп. В такой ситуации даже при тривиальных (почти нулевых) различиях между группами нулевая гипотеза по существу всегда будет отвергнута.

Оценка мощности. При планировании эксперимента нужно помнить, что мощность должна быть разумно высокой, чтобы обнаружить разумные отклонения от нулевой гипотезы

Факторы, влияющие на мощность статистических тестов. (повторение мать учения): Важно какой именно статистический критерий применяется. Некоторые статистические тесты по своей природе имеют большую мощность, чем другие. Важен объем выборки (количество наблюдений, на основании которых делается вывод). Вообще говоря, чем больше объем данных, тем больше мощность. Однако увеличение числа наблюдений связано с финансовыми и временными затратами. Следовательно, важно сделать объем выборки "разумно большим". Величина экспериментальных эффектов. Уровень ошибки в экспериментальных измерениях. Ошибка измерения интерпретируется как "шум", который может скрыть "сигнал" в реальных экспериментах. Следовательно, все действия, улучшающие точность и надежность измерения, могут увеличить статистическую мощность.

<< | >>
Источник: Шпаргалка - Качественные и количественные методы в психологии. 2016

Еще по теме 9.Что такое статистическая мощность исследования и от чего она зависит?:

- Акмеология - Введение в профессию - Возрастная психология - Гендерная психология - Девиантное поведение - Дифференциальная психология - История психологии - Клиническая психология - Конфликтология - Математические методы в психологии - Методы психологического исследования - Нейропсихология - Основы психологии - Педагогическая психология - Политическая психология - Практическая психология - Психогенетика - Психодиагностика - Психокоррекция - Психологическая помощь - Психологические тесты - Психологический портрет - Психологическое исследование личности - Психологическое консультирование - Психология девиантного поведения - Психология и педагогика - Психология общения - Психология рекламы - Психология труда - Психология управления - Психосоматика - Психотерапия - Психофизиология - Реабилитационная психология - Сексология - Семейная психология - Словари психологических терминов - Социальная психология - Специальная психология - Сравнительная психология, зоопсихология - Экономическая психология - Экспериментальная психология - Экстремальная психология - Этническая психология - Юридическая психология -