Правила раскрытия неопределённостей.
Часто встречаются случаи, когда непосредственно применить теоремы о пределах нельзя.
В этих случаях необходимо сначала раскрыть неопределенности и потом только вычислять пределы.
O В ситуации, когда числитель и знаменатель дроби стремится к нулю, говорят, что имеет место
неопределенность вида . Для раскрытия неопределенности такого вида необходимо:
а) числитель и знаменатель дроби разложить на множители, а затем сократить на множитель, приведший к неопределенности, при этом можно использовать:
формулы сокращенного умножения,
вынесение общего множителя за скобки,
группировку,
преобразование квадратного трехчлена с помощью дискриминанта или теоремы Виета;
т.к. ax2 + bx + c = a (x-x1)(x-x2), x1,x2 - корни уравнения ax2+bx+c=0,
преобразование многочлена с помощью деления многочлена на (x-x0),
умножение на сопряженное выражение, т.е. если предел содержит выражение то
путем умножения на избавляемся от корней, т.к.
б) использовать первый замечательный предел.