<<
>>

Краткий обзор методов решения задачи векторной оптимизации

Решение задачи векторной оптимизации представляет собой сложный процесс, в ходе которого могут применяться различные расчетные схемы и алгоритмы. Перечислим некоторые из наиболее употребительных.

· Методы, основанные на свертывании системы показателей эффективности;

· Методы, использующие ограничения на критерии;

· Методы целевого программирования;

· Методы, основанные на отыскании компромиссного решения;

· Методы, в основе которых лежат человеко-машинные процедуры принятия решений (интерактивное программирование).

Для ряда из вышеперечисленных методов вводится понятие функции предпочтения (полезности). С помощью функции предпочтения проблема сравнения совокупности чисел-значений, принимаемых показателями эффективности, сводится к сравнению чисел-значений, принимаемых функцией предпочтения. При этом ЛПР считает, что один набор значений локальных критериев предпочтительнее другого, если ему соответствует большее значение функции предпочтения. Кратко охарактеризуем упомянутые методы векторной оптимизации.

А. В методах, основанных на свертывании системы показателей эффективности, из локальных критериев формируется один. Наиболее распространенным является метод линейной комбинации локальных (частных) критериев.

Пусть рассматриваемая экономическая система характеризуется набором локальных критериев (целевых функций) и известен вектор весовых коэффициентов (вектор приоритетов) критериев , характеризующий важности соответствующих критериев, причем

.

В этом случае функция предпочтения выбирается в виде

(5.1)

и задача векторной оптимизации сводится к задаче скалярной оптимизации, рассмотренной ранее.

При решении данной задачи учитывается система функций-ограничений для каждой из целевых функций . К недостаткам данного метода можно отнести то, что решение, оптимизирующее функцию предпочтения, может оказаться неудовлетворительным по одному или сразу нескольким частным показателям. Это объясняется тем, что при достижении максимума функции предпочтения, недопустимо малые значения некоторых показателей компенсируются большими значениями остальных.

К этой же группе методов относятся методы, в которых используется среднестепенная функция предпочтения вида

,

где параметр .

Б. Методы, использующие ограничения на критерии, включают два подхода: метод ведущего критерия и метод последовательных уступок.

В методе ведущего критерия все целевые функции, кроме одной, переводятся в разряд ограничений. Пусть - вектор, компоненты которого представляют собой нижние границы соответствующих критериев. Тогда задача записывается в виде

где - исходная система функций-ограничений. Метод ведущего критерия применяется в таких задачах, как минимизация полных затрат при условии выполнения плана по производству различных видов продукции, максимизация выпуска комплектных наборов при ограничении на потребляемые ресурсы и ряда других.

Алгоритм метода последовательных уступок состоит в следующем:

1. Критерии нумеруются в порядке убывания важности.

2. Определяется оптимальное значение наиболее важного критерия .

Лицом, принимающим решение, устанавливается величина уступки по этому критерию.

3. Решается задача по критерию с дополнительным ограничением .

4. Пункты 2 и 3 повторяются последовательно для критериев .

В. При решении задач методами целевого программирования предполагается приближение значения каждого критерия к определенной величине , т.е. достижение определенной цели. В самом общем виде задача целевого программирования может быть сформулирована как минимизация сумм отклонений целевых функций (критериев) от целевых значений с нормированными весами :

, (5.2)

где - вектор целевых значений,- расстояние (мера отклонения) между и , . Часто (например, в случае линейного целевого программирования) полагают . Следует отметить, что точка , как правило, не принадлежит области допустимых значений, в связи с чем ее иногда называют идеальной или утопической точкой.

Г. В методах, основанных на отыскании компромиссного решения, используется принцип гарантированного результата. Задача может быть сформулирована следующим образом:

. (5.3)

Данным методом могут решаться задачи с заданными приоритетами критериев и многовекторные задачи.

Д. В методах основанных на человеко-машинных процедурах (методы интерактивного программирования) решение задачи происходит в интерактивном режиме. ЛПР оценивает полученное решение и вносит или изменяет заранее заданные коэффициенты или уступки по критериям, а также определяет направление оптимизации. Эта информация служит для постановки новой задачи оптимизации и получения промежуточного решения. Диалог продолжается до тех пор, пока решение не будет удовлетворять требованиям ЛПР. Основным достоинством данного метода является использование знаний и интуиции ЛПР, глубоко понимающего смысл задачи и способного правильно корректировать промежуточные результаты в нужном направлении.

Отметим еще один важный метод агрегирования целевой функции. В некоторых случаях, когда одни частные критерии желательно увеличивать, а другие – уменьшать, может быть использована функция агрегирования в виде отношения одних критериев к другим. При этом первая группа критериев отождествляется с целевым эффектом, а другая – с затратами на его достижение. Результатом агрегирования в этом случае выступает удельная эффективность

,

где - прибыль (полезный эффект), - затраты. Этот метод часто называют методом “затраты – эффект”.

Перейдем к рассмотрению информационных технологий решения ряда задач векторной оптимизации. В процессе рассмотрения мы ограничимся наиболее широко используемыми методами. Для решения задач будем использовать процессор электронных таблиц Excel, способный достаточно просто и эффективно решать задачи подобного рода.

<< | >>
Источник: Теория принятия решений. Учебный курс. 2003

Еще по теме Краткий обзор методов решения задачи векторной оптимизации: