Краткий обзор методов решения задачи векторной оптимизации
Решение задачи векторной оптимизации представляет собой сложный процесс, в ходе которого могут применяться различные расчетные схемы и алгоритмы. Перечислим некоторые из наиболее употребительных.
· Методы, основанные на свертывании системы показателей эффективности;
· Методы, использующие ограничения на критерии;
· Методы целевого программирования;
· Методы, основанные на отыскании компромиссного решения;
· Методы, в основе которых лежат человеко-машинные процедуры принятия решений (интерактивное программирование).
Для ряда из вышеперечисленных методов вводится понятие функции предпочтения (полезности). С помощью функции предпочтения проблема сравнения совокупности чисел-значений, принимаемых показателями эффективности, сводится к сравнению чисел-значений, принимаемых функцией предпочтения. При этом ЛПР считает, что один набор значений локальных критериев предпочтительнее другого, если ему соответствует большее значение функции предпочтения. Кратко охарактеризуем упомянутые методы векторной оптимизации.
А. В методах, основанных на свертывании системы показателей эффективности, из локальных критериев формируется один. Наиболее распространенным является метод линейной комбинации локальных (частных) критериев.
Пусть рассматриваемая экономическая система характеризуется набором локальных критериев (целевых функций) и известен вектор весовых коэффициентов (вектор приоритетов) критериев
, характеризующий важности соответствующих критериев, причем
.
В этом случае функция предпочтения выбирается в виде
(5.1)
и задача векторной оптимизации сводится к задаче скалярной оптимизации, рассмотренной ранее.
При решении данной задачи учитывается система функций-ограничений для каждой из целевых функций

К этой же группе методов относятся методы, в которых используется среднестепенная функция предпочтения вида
,
где параметр .
Б. Методы, использующие ограничения на критерии, включают два подхода: метод ведущего критерия и метод последовательных уступок.
В методе ведущего критерия все целевые функции, кроме одной, переводятся в разряд ограничений. Пусть - вектор, компоненты которого представляют собой нижние границы соответствующих критериев. Тогда задача записывается в виде
где - исходная система функций-ограничений. Метод ведущего критерия применяется в таких задачах, как минимизация полных затрат при условии выполнения плана по производству различных видов продукции, максимизация выпуска комплектных наборов при ограничении на потребляемые ресурсы и ряда других.
Алгоритм метода последовательных уступок состоит в следующем:
1. Критерии нумеруются в порядке убывания важности.
2. Определяется оптимальное значение наиболее важного критерия .

3. Решается задача по критерию с дополнительным ограничением
.
4. Пункты 2 и 3 повторяются последовательно для критериев .
В. При решении задач методами целевого программирования предполагается приближение значения каждого критерия к определенной величине , т.е. достижение определенной цели. В самом общем виде задача целевого программирования может быть сформулирована как минимизация сумм отклонений целевых функций (критериев) от целевых значений с нормированными весами
:
, (5.2)
где - вектор целевых значений,
- расстояние (мера отклонения) между
и
,
. Часто (например, в случае линейного целевого программирования) полагают
. Следует отметить, что точка
, как правило, не принадлежит области допустимых значений, в связи с чем ее иногда называют идеальной или утопической точкой.
Г. В методах, основанных на отыскании компромиссного решения, используется принцип гарантированного результата. Задача может быть сформулирована следующим образом:
. (5.3)
Данным методом могут решаться задачи с заданными приоритетами критериев и многовекторные задачи.
Д. В методах основанных на человеко-машинных процедурах (методы интерактивного программирования) решение задачи происходит в интерактивном режиме. ЛПР оценивает полученное решение и вносит или изменяет заранее заданные коэффициенты или уступки по критериям, а также определяет направление оптимизации. Эта информация служит для постановки новой задачи оптимизации и получения промежуточного решения. Диалог продолжается до тех пор, пока решение не будет удовлетворять требованиям ЛПР. Основным достоинством данного метода является использование знаний и интуиции ЛПР, глубоко понимающего смысл задачи и способного правильно корректировать промежуточные результаты в нужном направлении.
Отметим еще один важный метод агрегирования целевой функции. В некоторых случаях, когда одни частные критерии желательно увеличивать, а другие – уменьшать, может быть использована функция агрегирования в виде отношения одних критериев к другим. При этом первая группа критериев отождествляется с целевым эффектом, а другая – с затратами на его достижение. Результатом агрегирования в этом случае выступает удельная эффективность
,
где - прибыль (полезный эффект),
- затраты. Этот метод часто называют методом “затраты – эффект”.
Перейдем к рассмотрению информационных технологий решения ряда задач векторной оптимизации. В процессе рассмотрения мы ограничимся наиболее широко используемыми методами. Для решения задач будем использовать процессор электронных таблиц Excel, способный достаточно просто и эффективно решать задачи подобного рода.