<<
>>

1. Линейная корреляция

Если для выборки двумерной случайной величины (X, Y): {(xi, yi), i = 1, 2,..., n} вычислены выборочные средние и и выборочные средние квадратические отклонения σх и σу, то по этим данным можно вычислить выборочный коэффициент корреляции

.

Напомним, что коэффициент корреляции – безразмерная величина, которая служит для оценки степени линейной зависимости между Х и Y: эта связь тем сильнее, чем ближе |r| к единице.

Линейные уравнения, описывающие связь между Х и Y, называются выборочным уравнением прямой линии регрессии Y на Х:

и выборочным уравнением прямой линии регрессии Х на Y :

.

Пример 11. Для выборки двумерной случайной величины

i 1 2 3 4 5 6 7 8 9 10
xi 1,2 1,5 1,8 2,1 2, 3 3,0 3,6 4,2 5,7 6,3
yi 5,6 6,8 7,8 9,4 10,3 11,4 12,9 14,8 15,2 18,5

вычислить выборочные средние, выборочные средние квадратические отклонения, выборочный коэффициент корреляции и составить выборочное уравнение прямой линии регрессии Y на Х.

Решение.

Для определения выборочного коэффициента корреляции вычислим предварительно Тогда

Выборочное уравнение прямой линии регрессии Y на Х имеет вид: или

<< | >>
Источник: Симонов А.А., Выск Н.Д.. МАТЕМАТИЧЕСКАЯ СТАТИСТИКА. Методические указания и варианты курсовых заданий. Москва - 2005. 2005

Еще по теме 1. Линейная корреляция: