<<
>>

12.4. Задачи для самостоятельной работы

12.1. Измерительный прибор имеет систематическую ошибку 5 м и среднюю квадратическую ошибку 75 м, Какова вероятность того, что ошибка измерения не превзойдет по абсолютной величине 5 м?

(Ответ: )

12.2.

Систематическая ошибка удержания высоты самолетом +20 м, а случайная ошибка имеет среднее квадратическое отклонение 75 м. Для полета самолета отведен коридор высотой 100 м. Какова вероятность, что самолет будет лететь ниже, внутри и выше коридора, если самолету задана высота, соответствующая середине коридора?

(Ответ: pниже=0,18; pвнутри=0,48; pвыше=0,34)

12.3. Срединная ошибка измерения дальности радиолокатором равна 25 м, а систематическая ошибка отсутствует. Определить:

а) дисперсию ошибок измерения дальности;

б) вероятность получения ошибки измерения дальности, по абсолютной величине не превосходящей 20 м.

(Ответ: а) 1372 м2; б) 0,4105)

12.4. Случайное отклонение размера детали от номинала при изготовлении ее на данном станке имеет нулевое математическое ожидание и среднее квадратическое отклонение, равное 5 мк. Сколько необходимо изготовить деталей, чтобы с вероятностью не менее 0,9 среди них была хотя бы одна годная, если для годной детали допустимо отклонение размера от номинала не более, чем на 2 мк?

(Ответ: )

12.5. Даны две случайные величины X и Y, имеющие одинаковые дисперсии, но первая распределена нормально,а вторая равномерно. Определить соотношение между их срединными отклонениями.

(Ответ: )

12.6. Нормально распределенная случайная величина X имеет математическое ожидание м и срединное отклонение 10 м.

Вычислить таблицу функции распределения для значений аргумента через каждые 10 м и построить график.

(Ответ: См. таблицу

-65 -55 -45 -35 -25 -15 -5 +5 +15 +25 +35
35 350 2150 8865 25 000 50 000 75 000 91 135 97 850 99 650 99 965

)

12.7. Систематическая ошибка высотомера равна +20 м, а случайные ошибки распределены по нормальному закону. Какую среднюю квадратическую ошибку должен иметь высотомер, чтобы с вероятностью 0,9 ошибка измерения высоты по абсолютной величине была меньше 100 м?

(Ответ: . Получающееся трансцендентное уравнение проще решить графически)

12.8. Найти связь между средним арифметическим отклонением

нормально распределенной случайной величины и ее средним квадратическим отклонением.

(Ответ: )

12.9. Определить для нормально распределенной случайной величины X, имеющей М [X] = 0,

1)

2) (при

(Ответ: 1) 0,1587; 0,0228; 0,00135; 2) 0,3173; 0,0455; 0,0027)

12.10. Заряд охотничьего пороха отвешивается на весах, имеющих среднюю квадратическую ошибку взвешивания 150 мг. Номинальный вес порохового заряда 2,3 г. Определить вероятность повреждения ружья, если максимально допустимый вес порохового заряда 2,5 г.

(Ответ: )

12.11. Производятся два независимых измерения прибором, имеющим среднюю квадратическую ошибку 30м и систематическую ошибку +10м. Какова вероятность того, что обе ошибки измерений, имея разные знаки, по абсолютной величине превзойдут 10 м?

(Ответ: )

12.12. На плоскости проведены две параллельные прямые, расстояние между ними L. На эту же плоскость бросается круг радиуса R. Центр рассеивания расположен на расстоянии b от одной из линий во внешнюю сторону. Срединное отклонение центра круга в направлении, перпендикулярном линии, равно Е.

Определить при одном бросании:

а) вероятность накрытия кругом хотя бы одной прямой;

б) вероятность накрытия обеих прямых, если L= 10м, R = 8м, b=5м, E=10м.

(Ответ: а) 0,5196; б) 0,1281)

12.13. Изделие считается высшего качества, если отклонение его размеров от номинала не превосходит по абсолютной величине 3,45 мм. Случайные отклонения размера изделия от номинала подчиняются нормальному закону со средним квадратическим отклонением, равным 3 мм, а систематические отклонения отсутствуют. Определить среднее число изделий высшего сорта, если изготовляются четыре изделия.

(Ответ: изделия)

12.14. Какой ширины должно быть поле допуска, чтобы с вероятностью не более 0,0027 получалась деталь с контролируемым размером вне поля допуска, если случайные отклонения размера от середины поля допуска подчиняются закону нормального распределения с параметрами = 0 и = 5 мк

(Ответ: Не менее 30 мк)

12.15. Какое наибольшее расстояние допустимо между двумя рыболовецкими судами, идущими параллельными курсами, чтобы вероятность обнаружения косяка рыбы, находящегося посередине между ними, была не менее 0,5, если дальность обнаружения косяка для каждого из судов является независимой нормально распределенной случайной величиной с км и средним квадратическим отклонением =1,1 км?

(Ответ: ~8,6 км)

12.16.

При большом числе измерений установлено, что 75% ошибок

а) не превосходят +1,25 мм;

б) не превосходят по абсолютной величине 1,25 мм.

Заменяя частоты появления ошибок их вероятностями, определить в обоих случаях среднее квадратическое отклонение ошибок измерения, считая их нормально распределенными с нулевым математическим ожиданием.

(Ответ: а) 1,85 мм; 2) 1,08 мм)

12.17. Случайное отклонение X размера детали от номинала распределено по нормальному закону с математическим ожиданием и средним квадратическим отклонением . Годными деталями являются те, для которых а < X < b. Деталями, подлежащими переделке, являются те, для которых Х>b.

Найти:

а) функцию распределения случайных отклонений размеров деталей, подлежащих переделке;

б) функцию распределения случайных отклонений размеров годных деталей.

(Ответ: а) ) для ; б) для )

12.18. Нормально распределенная случайная величина X имеет нулевое математическое ожидание. Определить среднее квадратическое отклонение , при котором вероятность была бы наибольшей ().

(Ответ: )

<< | >>
Источник: Теория вероятностей. (Учебное пособие). 2004

Еще по теме 12.4. Задачи для самостоятельной работы:

  1. Задания для самостоятельной работы
  2. ТЕМЫ РЕФЕРАТОВ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ
  3. Литература для самостоятельной работы
  4. 1.Упражнения для самостоятельной работы
  5. Задачи для самостоятельной работы
  6. Задачи для самостоятельной работы
  7. Задачи для самостоятельной работы
  8. 1.4. Задачи для самостоятельной работы.
  9. 2.4. Задачи для самостоятельной работы
  10. 3.4. Задачи для самостоятельной работы
  11. 4.4. Задачи для самостоятельной работы