<<
>>

11.4. Задачи для самостоятельной работы

11.1. Математическое ожидание числа отказов радиоаппаратуры за 10000 часов работы равно 10. Определить вероятность отказа радиоаппаратуры за 100 часов работы.

(Ответ: )

11.2.

Вероятность того, что любой абонент позвонит на коммутатор в течение часа равна 0,01. Телефонная станция обслуживает 300 абонентов. Какова вероятность, что в течение часа позвонят 4 абонента?

(Ответ: )

11.3. Аппаратура содержит 2000 одинаково надежных элементов, вероятность отказа для каждого из которых равна р = 0,0005. Какова вероятность отказа аппаратуры, если он наступает при отказе хотя бы одного из элементов?

(Ответ: )

11.4. В течение часа коммутатор получает в среднем 60 вызовов. Какова вероятность того, что за время 30 сек, в течение которых телефонистка отлучилась, не будет ни одного вызова?

(Ответ: )

11.5. Вероятность того, что изделие не выдержит испытания, равна 0,001. Найти вероятность того, что из 5000 изделий более чем одно не выдержит испытания. Сравнить результаты расчетов, полученных с использованием распределения Пуассона и с использованием биномиального распределения. В последнем случае расчет производить с помощью семизначных таблиц логарифмов.

(Ответ: 1) 0,95958; 2) 0,95963)

11.6. За рассматриваемый период времени среднее число ошибочных соединений, приходящееся на одного телефонного абонента, равно 8. Какова вероятность, что для данного абонента число ошибочных соединений будет больше 4?

(Ответ: 0,9)

11.7. Найти вероятность того, что среди 200 изделий окажется более трех бракованных, если в среднем бракованные изделия составляют 1%.

(Ответ: 0,143)

11.8. Корректура в 500 страниц содержит 500 опечаток. Найти вероятность того, что на странице не меньше трех опечаток.

(Ответ: )

11.9. В наблюдениях Резерфорда и Гейгера радиоактивное вещество за промежуток времени 7,5 сек, испускало в среднем 3,87 -частицы. Найти вероятность того, что за 1 сек это вещество испустит хотя бы одну -частицу.

(Ответ: 0,4)

11.10. Определить асимметрию случайной величины, распределенной по закону Пуассона. (Асимметрией называется отношение ).

(Ответ: )

11.11. В аппаратурный отсек космической ракеты за время ее полета попадает элементарных частиц с вероятностью

.

Условная вероятность для каждой из них попасть при этом в уязвимый блок равна р. Найти вероятность попадания в блок:

а) ровно k частиц;

б) хотя бы одной частицы.

(Ответ: а) ; б) )

11.12. Определить дисперсию числа атомов радиоактивного вещества, распадающегося в единицу времени, если даны масса вещества М, период полураспада , атомный вес вещества А, число атомов в грамм-атоме .

Рассеиванием и поглощением частиц пренебречь.

Число Авогадро N0 =— число атомов в грамм-атоме, т.

е. в количестве вещества, вес которого в граммах равен атомному весу.

Периодом полураспада вещества называется время, в течение которого масса радиоактивного вещества уменьшается в среднем вдвое.

(Ответ: . Составить дифференциальное уравнение для среднего числа частиц в момент времени . Приравнять среднее число частиц половине первоначального. Полученное в результате этого уравнение дает возможность найти вероятность распада данной частицы; умножая ее на число частиц, получим )

11.13. Определить вероятность того, что в экран площадью см2, поставленный на расстоянии r=5 см перпендикулярно потоку от -радиоактивного вещества, попадает в течение секунды:

а) ровно десять -частиц;

б) не менее двух -частиц,

если период полураспада вещества лет, масса вещества М — 0,1 г, атомный вес вещества А = 238.

Рассеиванием и поглощением частиц пренебречь.

Число Авогадро N0 = — число атомов в грамм-атоме, т. е. в количестве вещества, вес которого в граммах равен атомному весу.

Периодом полураспада вещества называется время, в течение которого масса радиоактивного вещества уменьшается в среднем вдвое.

(Ответ: а) ; б) , где )

11.14. Доказать, что полиномиальное распределение

,

где

,

а

,

можно аппроксимировать функцией

,

где , если все вероятности , за исключением ,малы, а велико.

(Указание: Представить в виде:

, где . Так как и конечны, то )

<< | >>
Источник: Теория вероятностей. (Учебное пособие). 2004

Еще по теме 11.4. Задачи для самостоятельной работы: