1.Цель и задачи дисциплины, её место в учебном процессе.
Цель преподавания дисциплины «Математика» - формирование системы базовых знаний по данной дисциплине, которая позволит будущим специалистам решать в своей повседневной деятельности актуальные задачи практики, понимать написанные на современном научном уровне результаты других исследований и тем самым совершенствовать свои профессиональные навыки.
Основными задачами дисциплины являются:
- ознакомление студентов с ролью математики в современной жизни, с характерными чертами математического метода изучения реальных задач;
- обучение студентов теоретическим основам курса;
- привитие практических навыков математического моделирования реальных социально-экономических задач с использованием математического аппарата данного курса;
- развитие у студентов навыков творческого и логического мышления, повышение общего уровня математической культуры.
Данная дисциплина является основой при изучении таких дисциплин, как «Статистика», «Эконометрика», «Финансовая математика», а также других дисциплин, изучающих современные экономико-математические методы. В свою очередь, для изучения данной дисциплины необходимо знание элементарной математики.
В результате изучения данной дисциплины студент должен:
- знать теоретические основы линейной и векторной алгебры, аналитической геометрии, дифференциального и интегрального исчислений, дифференциальных уравнений, числовых и функциональных рядов, теории вероятностей и математической статистики;
- уметь использовать полученные знания для решения практических задач.
Изучение дисциплины предусматривает проведение лекционных, практических занятий и самостоятельную работу студентов. В лекциях излагается содержание тем программы с учётом требований, установленных для специалиста в квалификационной характеристике. Практические занятия проводятся с целью закрепления теоретических основ курса, получения практических навыков решения математических задач. Контроль знаний осуществляется с помощью контрольных работ и итогового экзамена (зачёта) в конце каждого из двух семестров обучения.
В первом семестре обучения студенты изучают разделы: линейная и векторная алгебра, аналитическая геометрия, введение в математический анализ (множества, функции, предел, непрерывность), дифференциальное исчисление функции одной переменной.