Тема 5. Квадратичные формы.
Квадратичной формой ( или кратко ) от -переменных называется однородный многочлен второй степени с действительными коэффициентами: , где .
Квадратичную форму всегда можно записать в матричном виде: , где - матрица квадратичной формы (являющаяся симметрической, так как выполняется условие ), - матрица-столбец, - матрица-строка, составленные из переменных .Квадратичная форма называется невырожденной, если её матрица является невырожденной.
Квадратичная форма называется канонической, если она имеет вид:
.
Всякую квадратичную форму всегда можно привести к каноническому виду, например, методам Лагранжа.
Квадратичные формы подразделяют на различные типы в зависимости от множества их значений. Квадратичная форма называется:
положительно (отрицательно) определённой, если для любого выполняется неравенство (); неотрицательно (неположительно) определённой, если для любого выполняется неравенство (), причём существует , для которого ; знакопеременной (или неопределённой), если существуют такие и , что и .
Невырожденная квадратичная форма может быть либо положительно определённой, либо отрицательно определённой, либо знакопеременной. Тип невырожденной квадратичной формы можно определить, проверяя знаки главных миноров матрицы квадратичной формы.
Пусть , где - матрица квадратичной формы. Главными минорами матрицы называются миноры порядка (), составленные из первых строк и первых столбцов матрицы: , , , .
Критерием знакоопределённости невырожденной квадратичной формы является критерий Сильвестра:
- квадратичная форма положительно определена тогда и только тогда, когда все главные миноры её матрицы положительны, т.е. , , , ;
- квадратичная форма отрицательно определена тогда и только тогда, когда для всех главных миноров её матрицы выполняются неравенства: , , , , (все миноры нечётного порядка отрицательны, а чётного – положительны) ;
- квадратичная форма знакопеременна тогда и только тогда, когда для главных миноров её матрицы выполняется хотя бы одно из условий: один из главных миноров равен нулю, один из главных миноров чётного порядка отрицателен, два главных минора нечётного порядка имеют разные знаки .