<<
>>

§13 Случайные меры.

13.1. Напомним определение - конечной меры.

Определение. Мера называется s - конечной, если для любого замкнутого ограниченного множества существует последовательность множеств , где , такая, что: a) при , б) .

Определение. Мера называется случайной и обозначается , где , если:

а) при фиксированных w и A как функция t является случайным процессом, б) при фиксированных w и t s - конечная мера, в) для .

Пусть - измеримая функция такая, что определён интеграл Лебега обозначаемый .

Обозначим .

Определение. Случайная мера m называется опциональной (предсказуемой), если для любой неотрицательной - измеримой функции Х процесс является опциональным (предсказуемым).

13.2. Обозначим .

Определение. Меру назовем мерой Долиан, если .

Отсюда следует, что для всякой неотрицательной - измеримой функции X(w, t, x) определен интеграл по мере Долиан:

.

Определение. Мера Долиан называется конечной, если . Определение. Будем говорить, что опциональная случайная мера m принадлежит классу (пишем ), если .

Определение. Mepa Долиан называется - s-конечной, если существует последовательность множеств таких, что , где , и для .

Определение. Будем говорить, что опциональная случайная мера принадлежит классу (пишем ) если , где и .

Очевидно следующее утверждение.

Теорема 42. .

13.3. Определение. Будем говорить, что случайные меры и совпадают Р - п. н. (пишем ), если для любой неотрицательной - измеримой функции Х .

Из этого определения следует утверждение.

Предложение 43, Пусть и - опциональные случайные меры такие, что:

а) для любой - измеримой X; б) хотя бы одна из них принадлежит . Тогда .

13.4. Определение. Компенсатором опциональной случайной меры называется предсказуемая мера (т. е. ) такая, что для любой неотрицательной, - измеримой функции Х(, t, х) .

Теорема 44. У всякой опциональной случайной меры существует и притом единственный компенсатор , т. е. (с точностью до нулевой меры Р). (Доказательство следует из теоремы Дуба - Мейера).

13.5. Определение. Случайная мера называется целочисленной, если:

1) для всех и ;

2) для принимает значения в ;

3) для фиксированных - -конечная мера;

4) для фиксированных - опциональный процесс.

Следующая теорема вытекает из определения целочисленной случайной меры и теорем 13 и 23.

Теорема 45. Пусть - целочисленная случайная мера, тогда существует мно­жество D и опциональный случайный процесс со значениями в Е такие, что , где - мера Дирака сосредоточенная в точке . Если - последовательность моментов остановки, исчерпывающая тонкое множество D, то для любой неотрицательной - измеримой функции спра­ведливо равенство

Р - п. н.

Следствие 46. Пусть - опциональный процесс со значениями в Rd. То­гда формула определяет целочис-ленную случайную меру на .

<< | >>
Источник: Теория случайных процессов. Лекция. 2017

Еще по теме §13 Случайные меры.:

  1. 2.2 Случайные процессы и СДУ
  2. 3.2.1 Случайные вейвлет-коэффициенты
  3. 1.1. Элементарные понятия о случайных событиях, величинах и функциях
  4. § 6. Диалектико-материалистический детерминизм: причинность, необходимость и случайность в процессе развития. Форма и содержание. Возможность и действительность
  5. Глава 10 Время — мера мира
  6. Свойства дисперсии случайной величины
  7. Принятые меры к пресечению нищенства в стране были подтверждены, дополнены и развиты при Николае I.
  8. Теория массового обслуживания. Случайные процессы.
  9. §1. Случайные события
  10. §10. Дискретные случайные величины и их характеристики