<<
>>

§14 Случайные меры и мультивариантные точечные процессы.

14.1. Пусть - m - вариантный точечный процесс, a

, - считающие процессы, где .

Пример. Пусть - случайный процесс определённый соотно­шением - пуассоновский случайный процесс с интенсивностью . Ясно, что процесс принимает два значения {-1, 1}, причём время пребывания в состоянии -1 или в состоянии 1 распределены экспонен-циально с параметром . Этот процесс имеет кусочно-постояные траектории и непрерывен справа, поэтому он опционален. Через обозначим число попаданий в состояние 1(-1) за время t процессом . Очевидно, что если для , то можно построить следующим образом:

,

.

Ясно также, что с помощью и можно описать процесс

,

так как . Легко показать, что для справедливо предста­вление

,

причем - ограниченные мартингалы (относительно меры Р) для .

Приведённый выше пример служит основой для дальнейших построений.

14.2. Перейдем теперь к построению целочисленной случайной меры k - вариантного точечного процесса и её компенсатора.

В предыдущих параграфах мы установили связь между скачко-образными и мультивариантными точечными процессами. Итак, пусть - скачкообразный опци­ональный случайный процесс со значениями в Е, причём . В соответствии с результатами параграфа 13 для процесса определена целочисленная случайная мера , где - последовательность марковских моментов, исчерпывающая скачки процесса , .

Очевидно, что при фиксированных это опциональный неубывающий процесс, т. е. при t ? s. Стало быть, является субмартингалом и по теореме Дуба-Мейера существует компенсатор , т. е. является мартингалом относительно потока и меры Р. Предположим дополнительно, что имеет неслучай­ную матрицу интенсивности перехода . Тогда в силу теоремы 35 допускает представление:

. (9)

Обозначим - число переходов процесс из состояния j в состояние i за время t. Ясно, что его можно представить в виде:

.

Найдём компенсатор - случайной меры . Сначала заметим, что

.

Отсюда, в силу (9), имеем:

. (16)

Заметим: 1) для Р - п. н.

;

2) так как - ограниченный предсказуемый процесс, то

стохастический инте­грал является мартингалом. Поэтому процесс является компенсатором - целочисленной случайной меры относительно меры P. Очевидно, что

Dxt = xt - xt- = . Учитывая, что траектория процесса кусочно-постоянна, получаем, . Поэтому

.

Таким образом, доказано утверждение.

Теорема 47. Пусть опциональный процесс с кусочно-постоянными траекториями, конечным или счетным множеством состояний Е и матрицей интенсивности переходов размера - . Тогда справедливы следующие утверждения:

1) целочисленная случайная мера допускает представление ,

где - последовательность марковских моментов (опциональных), исчерпывающая скачки процесса ;

2) компенсатор целочисленной случайной меры имеет вид

;

3) процесс допускает представление

.

14.3. Замечание. В общем случае, если - опциональный скачкообразный процесс с кусочно-постоянными траекториями, со значениями в , как легко показать, допускает представление

xt = x0 + ,

где .

<< | >>
Источник: Теория случайных процессов. Лекция. 2017

Еще по теме §14 Случайные меры и мультивариантные точечные процессы.:

  1. §9 Мультивариантные точечные процессы.
  2. §14 Случайные меры и мультивариантные точечные процессы.