<<
>>

Числовые характеристики СЛУЧАЙНОГО ВЕКТОРА

Для двумерного случайного вектора (X, Y) вводятся следующие числовые характеристики.

Начальным моментом порядка r + s случайного вектора (X, Y) называется действительное число nr,s, определяемое формулой:

nr,s = M[Xr Ys] =

Начальный момент nr,s существует, если интеграл (соответственно ряд) в правой части равенства абсолютно сходится.

В частности, nr,0 = M[Xr] - соответствующие начальные моменты компоненты X. Вектор с неслучайными координатами (mX, mY) = (n1,0, n0,1) называется математическим ожиданием случайного вектора (X, Y) или центром рассеивания.

Центральным моментом порядка r + s случайного вектора (X, Y) называется действительное число mr,s определяемое формулой

mr,s = M[(X-mX)r (Y-mY)s] =

Центральный момент mr,s существует, если интеграл (соответственно ряд) в правой части равенства абсолютно сходится. Вектор с неслучайными координатами (DX, DY) = (m2,0, m0,2) называется дисперсией случайного вектора.

Центральный момент m1,1 называется корреляционным моментом (ковариацией): KXY = M[] = M[(X-mX)?(Y-mY)] = M[XY]-mX mY.

Коэффициентом корреляции двух случайных компонентов X и Y случайного вектора является нормированная ковариация

rXY = KXY/(sXsY).

Свойства ковариации (и коэффициента корреляции):

1. KXX = DX, KYY = DY, (rXX = rYY = 1);

2. KXY = KYX, (rXY = rYX);

3. |KXY| £ , (|rXY | £ 1).

Ковариационный момент и коэффициент корреляции определяет степень линейной зависимости между X и Y. Условие |rXY | = 1 необходимо и достаточно, чтобы СВ X и Y были связаны линейной зависимостью Х = a?Y + b, где a и b - константы. СВ, для которых KXY = 0 (rXY = 0), называются некоррелированными. Из независимости случайных величин Х и Y вытекает их некоррелированность (обратное, вообще говоря, неверно).

Условным математическим ожиданием компоненты Х при условии, что Y приняла одно из своих возможных значений yj, называется действительное число определяемое формулой:

mX/Y = M[X/Y = yj] =

где Р{X = xi /Y = yj} = , pij = Р{X = xi ,Y = yj}.

Условной дисперсией компоненты Х при условии, что Y приняла одно из своих возможных значений yj, называется действительное число определяемое формулой:

DX/Y = D[X/Y = yj] =

Приведенные выше формулы для числовых характеристик двумерного случайного вектора без труда обобщаются на случай n-мерного случайного вектора (Х1, Х2, ..., Хn). Так, например, вектор с неслучайными координатами (m1, m2, ..., mn), где mi - математическое ожидание СВ Хi, определяемое формулой

mi = M[Xi] =, называется центром, рассеивания случайного вектора.

Ковариационной матрицей n-мерного случайного вектора = (Х1, Х2, ..., Хn) называется симметрическая матрица, элементы которой представляют собой ковариации соответствующих пар компонент случайного вектора:

K = ,

где Кij = M[] - ковариация i-й и j-й компонент.

Очевидно, что Кii = М[Xi2] -дисперсия i-й компоненты.

Корреляционной матрицей n-мерного случайного вектора называется симметрическая матрица, составленная из коэффициентов корреляции соответствующих пар компонент случайного вектора:

C = ,

rij = - коэффициент корреляции i-й и j-й компоненты.

Задача 1. Закон распределения случайного вектора (X, Y) задан в следующем виде:

Y

X

1 2 3
1 1/9 1/9 1/9
2 0 1/6 1/6
3 0 0 1/3

1. Вычислить условное математическое ожидание M[X/Y = 2] и дисперсию D[X/Y = 2].

2. Найти центр рассеивания случайного вектора (X, Y).

3. Построить ковариационную и корреляционную матрицы.

Задача 2. Координаты X, Y случайного положения точки на плоскости имеют

совместное равномерное распределение внутри области G = {(x, y) | -1£ x £ 2, 1 £ y £ 2}.

Записать общее выражение для ПР и для ФР вероятности случайного вектора (X,Y).

Найти центр рассеивания (mX, mY)и вычислить дисперсию (DX, DY) совместного распределения координат.

Построить ковариационную и корреляционную матрицы.

<< | >>
Источник: Ответы по теории вероятности. 2017

Еще по теме Числовые характеристики СЛУЧАЙНОГО ВЕКТОРА:

  1. 4.1 Анализ ковариационных матриц навигационных решений при различных созвездиях опрашиваемых НС
  2. О ФОРМЕ ДУШ
  3. «Пневматический» континуум и понятие «система»
  4. ПОЗНАНИЕ В СУДЕБНОЙ МЕДИЦИНЕ (система методов познания)
  5. Математика, естествознание и логика (0:0 От Марк[с]а)
  6. Математические и логические "перлы" у Жана Тироля
  7. Содержание дисциплины
  8. Глава 3. Место социологии управления в процессе осознания собственности как социального феномена
  9. 4.2. СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ
  10. 4.3. ПРАКТИЧЕСКИЕ ЗАНЯТИЯ