<<
>>

Случайные векторы

Упорядочная совокупность n случайных величин (СВ) Х1, Х2, ..., Хn, рассматриваемых совместно в данном опыте, называется n-мерной СВ или случайным вектором и обозначается = (Х1, Х2, ..., Хn).

Функцией распределения (ФР) n-мерного случайного вектора называется функция n действительных переменных х1, x2, ..., xn, определяемая как вероятность совместного выполнения n неравенств: F(x1, x2, ... xn) = P{ X1 < x1, X2 < x2,..., Xn < xn}. В частности, для двумерного случайного вектора (X, Y) по определению ФР имеем: F(x, y) = P{X < x, Y < y}. ФР F (х, у) обладает следующими свойствами:

1. 0 £ F(x, у) £ 1;

2. F(x, у) - неубывающая функция своих аргументов;

3.

4.

Свойство 4 обычно называют условием согласованности. Оно означает, что ФР отдельных компонент случайного вектора могут быть найдены предельным переходом из функции совместного распределения этих компонент. Вероятность попадания случайной точки на плоскости (X, Y) в прямоугольник со сторонами, параллельными осям координат, может быть вычислена с помощью ФР по формуле:

P{x1 £ X < x2, y1 £ Y < y2} = F(x1, y1)+ F(x2, y2)- F(x1, y2)- F(x2, y1).

Двумерный случайный вектор (X,Y) называется случайным вектором дискретного типа (СВДТ), если множество его возможных значений G(x, y) не более чем счетно. Ее закон распределения можно задать двумерной таблицей из перечня возможных значений пар компонент {(хi, yi) | (хi, yi) Î G(x, y)} и соответствующих каждой такой паре вероятностей pij = P{X = xi, Y = yj}, удовлетворяющих условию

Двумерный случайный вектор (X, Y) называется случайным вектором непрерывного типа (СВНТ), если существует такая неотрицательная функция f(x, y) называемая плотностью распределения (ПР) вероятностей случайного вектора, что:

f(x, y) = , тогда F(x, y) =.

ПР вероятностей обладает следующими свойствами:

f(x, y) ? 0, (x, y) Î R2;

- условие нормировки.

ПР вероятностей отдельных компонент случайного вектора выражаются в виде интегралов от совместной плотности:

f(x) = f(y) =.

Вероятность попадания случайной точки в произвольную квадрируемую область S на плоскости определяется по формуле

P{(X, Y) Î S}=.

Условной плотностью распределения вероятностей случайной компоненты X при условии, что компонента Y приняла определенное значение у, называется функция f(x/y) действительной переменной х Î R: f(x/y) = f(x, y)/f(y). Аналогично определяется условная плотностью распределения вероятностей случайной компоненты Y при условии, что компонента X приняла определенное значение x: f(y/x) = f(x, y)/f(x).

СВ X1, X2, ..., Хn называются независимыми (в совокупности), если для событий {Xi Î Bi}, i = 1, 2, ..., n, где B1, B2, ... Bn - подмножества числовой прямой, выполняется равенство: P{X1 Î B1, X2 Î B2, ... Xn Î Bn} = P{X1 Î B1}? P{X2 Î B2}? ... ?P{Xn Î Bn}.

Теорема: СВ X1, Х2, .... Хn независимы тогда и только тогда, когда в любой точке x = (x1, x2, ..., xn) имеет место равенство: F(x1, x2, ..., xn) = F(x1) ? F (x2) ? ... ? F (xn) (или f(x1, x2, ..., xn) = f(x1) ? f(x2) ? ... ? f(xn)).

<< | >>
Источник: Ответы по теории вероятности. 2017

Еще по теме Случайные векторы:

  1. 2.2 Случайные процессы и СДУ
  2. Протокол записи (SSL RP).
  3. 4.3.2. Схема Asokan - Slioup - Waidner
  4. МОДУЛЯЦИЯ И ДЕМОДУЛЯЦИЯ
  5. Глава 9. Magnum ignotum1 частной собственности в проекции общего вектора прогресса российского общества
  6. §1. Взаимонаправленные векторы
  7. П. ВЕКТОР — ОТ КЛАССИЧЕСКОЙ ФИЛОСОФИИ. ВЕКТОР — ОТ СОВРЕМЕННОГО БЫТИЯ. ТОЧКА ВСТРЕЧИ — XX ВЕК.
  8. Случайные векторы
  9. Числовые характеристики СЛУЧАЙНОГО ВЕКТОРА
  10. Многомерные случайные величины
  11. Содержание
  12. Раздел 5. Системы случайных величин (случайные векторы).