<<
>>

7.1. Краткая теоретическая часть

В настоящем разделе мы изучим основные закономерности, относя­щиеся к одной из важнейших схем теории вероятностей — схеме по­следовательных независимых испытаний. В это понятие мы вклады­ваем следующий смысл.

Под испытанием(опытом) мы станем понимать осуществление опреде­ленного комплекса условий, в результате которого может произойти то или иное элементарное событие пространства U элементарных событий. Математической моделью последовательности п испытаний является новое пространство элементарных событий, состоящее из точек , где - произвольная точка пространства U, отвечающая испытанию с номером i.

Предположим, что для s-го испытания пространство U разбито на k несовместимых случайных событий , т. е. предположим, что

Событие назовем i-м исходом при s-м испытании. Обозначим вероятность i-го исхода при s-м испытании через .

Обозначим через событие, состоящее из всех тех точек пространства , для которых .

Если в пространстве Un имеет место равенство при любых - то испытания называются независимыми.

В дальнейшем мы ограничимся случаем, когда вероятности собы­тий не зависят от номера испытания s; обозначим в этом случае ; в силу несовместимости и единственной возможности исходов очевидно, имеем . Эта схема впервые была рассмотрена Я. Бернулли в важнейшем частном случае ; по этой причине указанный случай носит название схемы Бернулли. В схеме Бернулли обычно полагают .

Из определения независимых испытаний вытекает следующий результат:

Теорема. Если данные п испытаний независимы, то любые т из них также независимы.

Простейшая задача, относящаяся к схеме независимых испытаний, состоит в определении вероятности того, что при п испыта­ниях событие А наступит т раз, а остальные п—т раз наступит противоположное событие , обозначим это событие В. Тогда

(7.1)

Здесь Аi – событие состоящее в том, что событие А произойдет в i- ом испытании.

Событие В представляет собой сумму несовместных событий, тогда согласно теореме сложения вероятностей получаем
(7.2)

Вероятность каждого слагаемого в данной сумме по теореме умножения для независимых событий равна . По теореме сложения вероятностей искомая вероятность равна сумме только что вычисленных вероятностей для всех различных способов т появлений события А и n—т не появлений среди п испы­таний. Число таких способов, как известно из теории сочетаний, равно ; следовательно, искомая вероятность равна

(7.3)

Так как все возможные несовместимые между собой исходы п испытаний состоят в появлении события 0 раз, 1 раз, 2 раза, ..., n раз, то ясно, что

(7.4)

Легко заметить, что вероятность равна коэффициенту при в разложении бинома по степеням x.

Исследуем далее, как ведет себя вероятность при различных значениях m. с увеличением m сначала возрастает, затем достигает максимума и при дальнейшем росте m убывает.

При этом, если является целым числом, то максимальное значение вероятность принимает для двух значений m, а именно и . Если же не является целым числом, то максимальное значение вероятности достигается при , равном максимальному целому числу, большему из и . Число называют наивероятнейшим значением и обозначают через .

Поставим теперь более общую задачу.

Рассмотрим последовательность n независимых испытаний, в каждом из которых может произойти или не произойти некоторое событие А. При этом вероятность появления события в каждом испытании различна.

Обозначим через . Аi – событие состоящее том что А произойдет в i-ом испытании – событие состоящее том что А не произойдет в i-ом испытании соответственно.

Следует определить вероятность того что событие А произойдет m раз в серии из n испытаний.

Вероятность того, что событие А произойдет m раз в серии из n испытаний равна коэффициенту при в выражении производящей функции

(7.5)

то есть

(7.6)
(7.7)

Обозначим через событие состоящее в том, что А появляется не менее m раз в n независимых испытаниях, а вероятность обозначим , тогда

(7.8)

В тех случаях когда удобно пользоваться следующей формулой

(7.9)
<< | >>
Источник: Теория вероятностей. (Учебное пособие). 2004

Еще по теме 7.1. Краткая теоретическая часть:

  1. I. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
  2. 6.2. Краткие теоретические сведения.
  3. Краткие теоретические сведения
  4. Краткие теоретические сведения
  5. Краткие теоретические сведения
  6. Краткие теоретические сведения
  7. Краткие теоретические сведения
  8. Краткие теоретические сведения
  9. Краткие теоретические сведения
  10. 1.1. Краткая теоретическая часть.
  11. 2.1. Краткая теоретическая часть.
  12. 3.1. Краткая теоретическая часть