<<
>>

2.2. Метод простой итерации

Для того чтобы применить метод простой итерации, необходимо систему уравнений

(1)

с квадратной невырожденной матрицей привести к виду

, (2)

где – квадратная невырожденная матрица с элементами , – вектор-столбец неизвестных , – вектор-столбец с элементами , .

Существуют различные способы приведения системы (1) к виду (2). Рассмотрим самый простой.

Представим систему в развернутом виде:

(3)

Из первого уравнения системы (3) выразим неизвестную :

из второго уравнения – неизвестную :

и т. д. В результате получим систему:

(4)

Матричная запись системы (4) имеет вид (2). На главной диагонали матрицы находятся нулевые элементы, а остальные элементы вычисляются по формулам:

(5)

Очевидно, что диагональные элементы матрицы должны быть отличны от нуля.

Выберем произвольно начальное приближение. Обычно в качестве первого приближения берут или . Подставим начальное приближение в правую часть (4). Вычисляя левые части, получим значения . Продолжая этот процесс дальше, получим последовательность приближений, причем приближение строится следующим образом:

Последняя система представляет собой расчетные формулы метода простой итерации.

Сходимость метода простой итерации. Известно следующее достаточное условие сходимости метода простой итерации.

Если элементы матрицы удовлетворяют условию:

, (6)

то итерационная последовательность сходится к точному решению .

Условие (7) называют условием преобладания диагональных элементов матрицы , так как оно означает, что модуль диагонального элемента -ой строки больше суммы модулей остальных элементов этой строки, .

Необходимо помнить, что условие сходимости (6) является лишь достаточным. Его выполнение гарантирует сходимость метода простых итераций, но его невыполнение, вообще говоря, не означает, что метод расходится.

Справедлива следующая оценка погрешности:

, (7)

где .

Правую часть оценки (7) легко вычислить после нахождения очередного приближения.

Иначе достаточное условие (6) для матрицы может быть переформулирована так: если , то итерационный процесс (6) сходится к точному решению системы.

Критерий окончания. Если требуется найти решение с точностью , то в силу (7) итерационный процесс следует закончить, как только на -ом шаге выполнится неравенство: .

Поэтому в качестве критерия окончания итерационного процесса можно использовать неравенство , где .

Если выполняется условие , то можно пользоваться более простым критерием окончания:

. (8)

В других случаях использование последнего критерия (8) неправомерно и может привести к преждевременному окончанию итерационного процесса.

Пример 3.

Применим метод простой итерации для решения системы уравнений

.

Заметим, что метод простой итерации сходится, так как выполняется условие преобладания диагональных элементов:

, ,

, .

Пусть требуемая точность .

Вычисления будем проводить с четырьмя знаками после десятичной точки.

Приведем систему к виду:

Величина равна 0,1179, т. е. выполняется условие и можно пользоваться критерием окончания итерационного процесса (8). В качестве начального приближения возьмем элементы столбца свободных членов: . Вычисления будем вести до тех пор, пока все величины , , а следовательно, и не станут меньше .

Последовательно вычисляем:

при

при

.

при

.

при

.

Вычисляем модули разностей значений при и :

.

Так как все они больше заданной точности , продолжаем итерации.

При

.

Вычисляем модули разностей значений при и :

. Все они меньше заданной точности , поэтому итерации заканчиваем. Приближенным решением системы являются следующие значения:

.

Для сравнения приведем точные значения переменных:

.

<< | >>
Источник: Котюргина, А.С.. Численные методы: учеб. пособие / А. С. Котюргина. – Омск: Изд-во ОмГТУ,2010. – 84 с.. 2010

Еще по теме 2.2. Метод простой итерации: