<<
>>

7.4. Метод Рунге – Кутта

Метод Рунге – Кутта является одним из наиболее употребительных методов высокой точности. Метод Эйлера можно рассматривать как простейший вариант метода Рунге – Кутта.

Рассмотрим задачу Коши для дифференциального уравнения с начальным условием .

Как и в методе Эйлера, выберем шаг и построим сетку с системой узлов .

Обозначим через приближенное значение искомого решения в точке .

Приведем расчетные формулы метода Рунге – Кутта четвертого порядка точности:

, ,

, ,

, .

Оценка погрешности. Оценка погрешности метода Рунге – Кутта затруднительна. Грубую оценку погрешности дает правило Рунге. Так как метод Рунге – Кутта имеет четвертый порядок точности, т. е. , то оценка погрешности примет вид: .

Используя правило Рунге, можно построить процедуру приближенного вычисления решения задачи Коши методом Рунге – Кутта четвертого порядка точности с заданной точностью .

Нужно, начав вычисления с некоторого значения шага , последовательно уменьшать это значение в два раза, каждый раз вычисляя приближенное значение . Вычисления прекращаются тогда, когда будет выполнено условие: .

Приближенным решением будут значения .

Пример 4. Методом Рунге-Кутта четвертого порядка точности найдем решение на отрезке следующей задачи Коши .

Возьмем шаг . Тогда .

Расчетные формулы имеют вид:

, , ,

, , .

Задача имеет точное решение: , поэтому погрешность определяется как абсолютная величина разности между точными и приближенными значениями .

Найденные приближенные значения решения и их погрешности представлены в таблице 9.

Таблица 9

0 1 0,6 1,43333
0,1 1,01005 10-9 0,7 1,63232
0,2 1,04081 0,8 1,89648
0,3 1,09417 0,9 2,2479
0,4 1,17351 1 2,71827
0,5 1,28403

7.5.

<< | >>
Источник: Котюргина, А.С.. Численные методы: учеб. пособие / А. С. Котюргина. – Омск: Изд-во ОмГТУ,2010. – 84 с.. 2010

Еще по теме 7.4. Метод Рунге – Кутта: