<<
>>

Ряды Фурье.

( Жан Батист Жозеф Фурье (1768 – 1830) – французский математик)

Тригонометрический ряд.

Определение. Тригонометрическим рядом называется ряд вида:

или, короче,

Действительные числа ai, bi называются коэффициентами тригонометрического ряда.

Если ряд представленного выше типа сходится, то его сумма представляет собой периодическую функцию с периодом 2p, т.к. функции sinnx и cosnx также периодические функции с периодом 2p.

Пусть тригонометрический ряд равномерно сходится на отрезке [–p; p], а следовательно, и на любом отрезке в силу периодичности, и его сумма равна f(x).

Определим коэффициенты этого ряда.

Для решения этой задачи воспользуемся следующими равенствами:

Справедливость этих равенств вытекает из применения к подынтегральному выражению тригонометрических формул. Подробнее см. Интегрирование тригонометрических функций.

Т.к. функция f(x) непрерывна на отрезке [–p; p], то существует интеграл

Такой результат получается в результате того, что .

Получаем:

Далее умножаем выражение разложения функции в ряд на cosnx и интегрируем в пределах от –p до p.

Отсюда получаем:

Аналогично умножаем выражение разложения функции в ряд на sinnx и интегрируем в пределах от –p до p.

Получаем:

Выражение для коэффициента а0 является частным случаем для выражения коэффициентов an.

Таким образом, если функция f(x) – любая периодическая функция периода 2p, непрерывная на отрезке [–p; p] или имеющая на этом отрезке конечное число точек разрыва первого рода, то коэффициенты

существуют и называются коэффициентами Фурье для функции f(x).

Определение. Рядом Фурье для функции f(x) называется тригонометрический ряд, коэффициенты которого являются коэффициентами Фурье. Если ряд Фурье функции f(x) сходится к ней во всех ее точках непрерывности, то говорят, что функция f(x) разлагается в ряд Фурье.

<< | >>
Источник: Архаров Евгений Валерьевич. Учебно–методический комплекс по дисциплине Математика Нижний Новгород, 2011. 2011

Еще по теме Ряды Фурье.:

  1. Временные ряды и прогнозирование.
  2. Фурье
  3. Содержание дисциплины
  4. Ряды Фурье.
  5. Достаточные признаки разложимости в ряд Фурье.
  6. Разложение в ряд Фурье непериодической функции.
  7. Ряд Фурье для четных и нечетных функций.
  8. Ряды Фурье для функций любого периода.
  9. Ряд Фурье по ортогональной системе функций.
  10. ФУРЬЕ
  11. 4.2. СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ
  12. 3) Ряды Фурье по произвольной ортогональной системе функций.
  13. 5) Формулировка достаточных условий разложимости функции в тригонометрический ряд Фурье.