<<
>>

Разложение в ряд Фурье непериодической функции.

Задача разложения непериодической функции в ряд Фурье в принципе не отличается от разложения в ряд Фурье периодической функции.

Допустим, функция f(x) задана на отрезке [a, b] и является на этом отрезке кусочно – монотонной.

Рассмотрим произвольную периодическую кусочно – монотонную функцию f1(x) c периодом 2Т ? ïb–aï, совпадающую с функцией f(x) на отрезке [a, b].

y

f(x)

a – 2T a a b a+2T a + 4T x

Таким образом, функция f(x) была дополнена. Теперь функция f1(x) разлагается в ряд Фурье. Сумма этого ряда во всех точках отрезка [a, b] совпадает с функцией f(x), т.е. можно считать, что функция f(x) разложена в ряд Фурье на отрезке [a, b].

Таким образом, если функция f(x) задана на отрезке, равном 2p ничем не отличается от разложения в ряд периодической функции. Если же отрезок, на котором задана функция, меньше, чем 2p, то функция продолжается на интервал (b, a + 2p) так, что условия разложимости в ряд Фурье сохранялись.

Вообще говоря, в этом случае продолжение заданной функции на отрезок (интервал) длиной 2p может быть произведено бесконечным количеством способов, поэтому суммы получившихся рядов будут различны, но они будут совпадать с заданной функцией f(x) на отрезке [a,b].

<< | >>
Источник: Архаров Евгений Валерьевич. Учебно–методический комплекс по дисциплине Математика Нижний Новгород, 2011. 2011

Еще по теме Разложение в ряд Фурье непериодической функции.:

  1. 2.4.1 Методы представления детерминированных компонент составляющих объекта измерения.
  2. Содержание дисциплины
  3. Разложение в ряд Фурье непериодической функции.
  4. Перечень вопросов к зачету на втором курсе
  5. 4.2. СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ