Вопрос №2 Измерение расхода жидкостей, газа и пара по перепаду давления в сужающем устройстве
Основы теории измерения расхода по перепаду давления в сужающих устройствах Данный метод измерения расхода основан на зависимости перепада давления в неподвижном сужающем устройстве (СУ), устанавливаемом в трубопроводе, от расхода измеряемой среды.
Это устройство следует рассматривать как первичный преобразователь расхода. Создаваемый в сужающем устройстве перепад давления измеряется дифманометром, который может быть показывающим со шкалой в единицах расхода. При необходимости дистанционной передачи показаний дифманометр снабжается преобразователем, который линией связи соединяется с вторичным прибором и другими устройствами. Метод измерения расхода является наиболее отработанным, сужающие устройства и дифманометры для них выпускают все крупнейшие приборостроительные фирмы мира. Для измерения расхода пара, газа, жидкостей в трубопроводах диаметром свыше 300 мм в основном используется этот метод.Рассматриваемый принцип измерения заключается в том, что при протекании потока через отверстие сужающего устройства повышается скорость потока по сравнению со скоростью до сужения. Увеличение скорости, а следовательно, и кинетической энергии вызывает уменьшение потенциальной энергии и соответственно статического давления. Расход может быть определен при известной градуировочной характеристикепо перепаду давления Δр на сужающем устройстве, измеренному дифманометром. Использование рассматриваемого метода измерения требует выполнения определенных условий:
• характер движения потока до и после сужающего устройства должен быть турбулентным и стационарным;
• поток должен полностью заполнять все сечение трубопровода;
• фазовое состояние потока не должно изменяться при его течении через сужающее устройство (пар является перегретым, при этом для него справедливы все положения, касающиеся измерения расхода газа);
• во внутренней полости трубопровода до и после сужающего устройства не образуются осадки и другие виды загрязнений;
• на поверхностях сужающего устройства не образуются отложения, изменяющие его геометрию.
Сужающие устройства условно подразделяются на стандартные, специальные и нестандартные. Стандартными называются сужающие устройства, которые рассчитаны, изготовлены и установлены в соответствии с руководящим нормативным документом ГОСТ 8.569.1-97. К числу специальных относятся стандартные диафрагмы для трубопроводов с внутренним диаметром менее 50 мм. Сужающие устройства, не относящиеся к этим двум группам, называются нестандартными. Градуировочная характеристика стандартных сужающих устройств определяется с помощью расчетов без индивидуальной градуировки. Этот момент обусловил широкое применение данного метода для измерения расходов воды, пара, газа в трубопроводах больших диаметров. Градуировочные характеристики нестандартных сужающих устройств определяются в результате индивидуальной градуировки.
Этому методу присущи следующие недостатки:
• узкий динамический диапазон, не превышающий трех-пяти при использовании одного дифманометра;
• диаметр трубопровода должен быть более 50 мм, в противном случае необходима индивидуальная градуировка;
• значительные длины линейных участков;
• наличие потери давления.
В качестве стандартных сужающих устройств для измерения расхода жидкостей, газов и пара используются диафрагмы, сопла и значительно реже трубы и сопла Вентури. Диафрагма (рис. 12.1, а) представляет собой тонкий диск с круглым отверстием, ось которого располагается по оси трубы. Передняя (входная) часть отверстия имеет цилиндрическую форму, а затем переходит в коническое расширение. Передняя кромка отверстия должна быть прямоугольной (острой) без закруглений и заусениц. Диапазон рабочих чисел Re зависит от относительного диаметра СУ и для диафрагмы он составляет от '.
Сопло (рис. 12.1, б) имеет спрофилированную входную часть, переходящую затем в цилиндрический участок диаметром d (его значение входит в уравнения расхода). Задняя торцевая часть сопла включает цилиндрическую выточку диаметром, большим d, для предохранения выходной кромки цилиндрической части сопла от повреждения.
При измерении расхода стандартные сопла устанавливаются на трубопроводах диаметром не менее 50 мм, числа Re потока при этом должны составлять 2 · 104...107.
Рис. 12.1. Стандартные сужающие устройства: а — диафрагма; б — сопло; в — сопло Вентури
Сопло Вентури (контур показан на рис. 12.1, в) содержит входную часть с профилем сопла, переходящую в цилиндрическую часть, и выходной конус (может быть длинным или укороченным). Минимальный диаметр трубопровода для стандартных сопл Вентури составляет 65 мм. Их используют в диапазоне чисел Re от 1,5 · 105 до 2 · 106. На рис. 12.1 символами p1 и р2 отмечены точки отбора давлений, подаваемых на дифманометр.
Рассмотрим движение потока несжимаемой жидкости через сужающее устройство на примере диафрагмы (рис. 12.2). На рисунке показаны профиль потока, проходящего через диафрагму, а также распределение давления вдоль стенки трубы (сплошная линия) и по оси трубы (штрихпунктирная линия). После сечения А струя сужается и, следовательно, средняя скорость потока возрастает. Вследствие инерции струя продолжает сужаться и на некотором расстоянии после диафрагмы, место наибольшего сужения находится в сечении В. Увеличение скорости на участке АВ сопровождается уменьшением статического давления от первоначального значения ра до минимального значения рb.
После сечения В начинается расширение струи, которое заканчивается в сечении С. Этот процесс сопровождается уменьшением скорости и увеличением статического давления. В сечении С скорость примет первоначальное значение (как в сечении А), но давление рс будет меньше первоначального на рп, называемое потерей давления в сужающем устройстве. Наличие потери давления вызвано потерей энергии потока в мертвых зонах, находящихся до и за диафрагмой, из-за сильного вихреобразования в них. Для определения общей зависимости между расходом и перепадом давления предположим, что жидкость несжимаема (т.е. плотность жидкости не изменяется при прохождении через сужающее устройство), отсутствует теплообмен с окружающей средой, трубопровод горизонтален, нет потерь на сопротивление СУ, поле скоростей равномерное.
Рис. 12.2. Характер потока и распределение статического давления при установке в трубопроводе диафрагмы
Уравнение сохранения постоянства массового расхода (неразрывности) для несжимаемой жидкости, записанное для сечения A и на выходе диафрагмы, имеет вид:
(12.1)
где uD — начальная скорость потока в трубопроводе;
ud — скорость потока в отверстии СУ;
р — плотность среды;
Gm — массовый расход.
Записанное для этих сечений уравнение Бернулли, выражающее закон сохранения энергии для потока в трубе, имеет вид:
(12.2)
Обозначим в соответствии с ГОСТ 8569.2-97 относительный диаметр СУ черезранее квадрат этого отношения назывался относительной площадью или модулем т СУ. Используя (12.1), можно записать
тогда подставляя значение uD в (12.2), получаем:
(12.3)
Величина Е = 1/(1 - β4)0,5 называется коэффициентом скорости входа, f — минимальная площадь проходного сечения СУ. Рассчитанное по выражению (12.3) значение массового расхода получается завышенным из-за завышенного перепада давления на СУ, вызванного торможением потока, завихрениями на входе и выходе СУ. В связи с этим в уравнение (12.3) вводится коэффициент истечения С, меньший единицы.
Расчет массового расхода для несжимаемых сред производится по выражению
(12.4)
объемного
(12.5)
ранее произведение СЕ называлось коэффициентом расхода α.
Формулы (12.4), (12.5) справедливы для несжимаемых жидкостей. При измерении расхода газа, пара, воздуха их плотность после СУ снижается, объем увеличивается. При этом получается завышенное значение перепада, а следовательно, и расхода, для компенсации этого эффекта в формулы (11.4), (11.5) вводится коэффициент ε, меньший единицы и называемый коэффициентом расширения. Таким образом, расчетные соотношения для массового и объемного расхода сжимаемых сред имеют вид
(12.6)
объемного
(12.7)
Выражения (12.6), (12.7) являются основными уравнениями расхода, пригодными для сжимаемых и несжимаемых сред, для последних ε = 1. При определении по этим уравнениям расхода величины f, р, р, Gm, G0 имеют соответственно следующую размерность: м2, Па, кг/м3, кг/с, м3/с. Существующие конструкции сужающих устройств обеспечивают близкое к постоянным значения коэффициента истечения только в ограниченном интервале изменения чисел Рейнольдса (Re = uD/v, где v — кинематическая вязкость).
Значения С и е определены в результате экспериментальных исследований, проведенных на трубопроводах с гладкой внутренней поверхностью при распределении скоростей потока по сечению трубопровода, соответствующему установившемуся турбулентному режиму течения. В экспериментах использовались диафрагмы с острой входной кромкой.
Для геометрически подобных СУ при гидродинамическом подобии потоков измеряемой среды значения С одинаковы. Геометрическое подобие СУ состоит в равенстве отношений геометрических размеров СУ к диаметру трубопровода. Гидродинамическое подобие потоков имеет место при равенстве чисел Re. Значения коэффициентов истечения определялись во многих странах мира с использованием образцовых расходомерных установок, основанных на измерении массы Gм или объема вещества G0, протекшего через СУ за фиксированный интервал времени.
Коэффициент С рассчитывается по этим данным как отношение фактического расхода к теоретическому, рассчитанному по перепаду давления на СУ
Экспериментально коэффициент расширения e определяется на сжимаемой среде как отношение коэффициентов истечения сжимаемойсреды и несжимаемой при известных значениях
Поскольку для расчета сужающих устройств используются компьютерные программы, то экспериментально полученные значения С, ε описаны эмпирически. Коэффициент С выражен через две составляющие: С = C_KRe. Коэффициент С_ зависит только от B, a KRe меняется с изменением Re. Для диафрагмы с угловым отбором давления
(12.8) и (12.9)
Графики зависимостей СЕ = /(Re, (3) для диафрагм с угловым отбором давления, поскольку для диафрагм KRe зависит от способа отбора давления представлены на рис. 12.3 и в табл. 12.1. От него зависит также величина изменений KRe в области рабочих чисел Re. Если эти изменения у диафрагм с угловым отбором давления при β = 0,27...0,8 составляют соответственно 0,5...5 %, то при фланцевом отборе давления изменения составляют лишь 0,3...2 %. В таких же пределах меняется KRe у сопл, у сопл Вентури в рабочем диапазоне чисел Re С остается постоянным.
Поправочный множитель ε в общем виде зависит от β, показателя адиабаты ? и отношения Δр/р (р — абсолютное давление среды до сужающего устройства). Расчетное соотношение для ε определяется типом сужающего устройства и для диафрагмы независимо от способа отбора давления
Рис. 12.3. Зависимость СЕ для диафрагм с угловым отбором от Re и β:
1 ÷ 4 — β = 0,2; 0,4; 0,6; 0,8
Таблица 12.1
Таблица коэффициентов скорости входа Е и истечения С для диафрагм с угловым способом отбора давления
Е | С | ||||||
β | Rе | ||||||
0,5 · 103 | 1 · 104 | 1 · 105 | 1 · 106 | 1 · 107 | I · 108 | ||
0,2 | 1,0008 | 0,5997 | 0,5986 | 0,5973 | 0,5970 | 0,5970 | 0,5970 |
0,3 | 1,0041 | 0,6060 | 0,6029 | 0,5992 | 0,5985 | 0,2984 | 0,5984 |
0,4 | 1,0130 | 0,6159 | 0,6096 | 0,6020 | 0,6006 | 0,6004 | 0,6003 |
0,5 | 1,0328 | — | 0,6187 | 0,6053 | 0,6030 | 0,6026 | 0,6025 |
0,6 | 1,0719 | — | 0,6291 | 0,6080 | 0,6043 | 0,6036 | 0,6035 |
0,7 | 1,1472 | — | 0,6376 | 0,6067 | 0,6012 | 0,6003 | 0,6001 |
0,8 | 1,3014 | — | 0,6371 | 0,5939 | 0,5862 | 0,5849 | 0,5846 |
Таким образом, между расходом и перепадом давления в сужающем устройстве существует квадратичная зависимость, что позволяет дифманометры, измеряющие перепад давления градуировать в единицах расхода или получать пропорциональный расходу выходной сигнал. Такие дифманометры называются дифманометрами-расходомерами. Для получения равномерной шкалы расходомера в кинематическую или электронную схему дифманометров или вторичных приборов включаются различные типы устройств, извлекающих квадратный корень. В микропроцессорных дифманометрах помимо извлечения корня выполняется комплекс расчетных операций, связанных с учетом изменения плотности среды, коэффициента расширения и пр.
Необходимость извлечения квадратного корня является одним из недостатков метода измерения расхода по перепаду давления, обусловливающим суженный диапазон измерения расходомера, охватывающий обычно интервал 30... 100% максимального измеряемого расхода Gв.п. Это означает, что использовать расходомер для измерения расходов в интервале 0...30 % его шкалы не рекомендуется, так как здесь не гарантируется достаточная точность измерения. Это вызвано тем, что в начале шкалы резко увеличивается относительная погрешность измерения перепада давленияДействительно, при уменьшении расхода отнапример, до 0,25 Gв.п. в соответствии с (12.7) перепад давления в сужающем устройстве уменьшится в 16 раз, а при расходе — 100 раз, относительная погрешность измерения перепада также увеличивается соответственно в 16 и 100 раз. Точность расходомера обычно гарантируется только в пределах шкалы 30 ... 100%.
Реально существующая шероховатость трубопровода заостряет профиль скоростей и несколько увеличивает коэффициент истечения, особенно при малых диаметрах труб. Это учитывается умножением исходного коэффициента расхода на поправочный множитель Кш. Для всех типов сужающих устройств значение Кш увеличивается с уменьшением диаметра трубопровода и увеличением. Трубы диаметром D > 300 мм имеют малую относительную шероховатость (т.е. по свойствам приближаются к гладким), поэтому для них Кш = 1.
Изменение С, вызванное притуплением входной кромки диафрагмы, учитывается введением поправочного множителя Кп на притупление входной кромки, значение которого зависит от диаметра трубопровода и относительной площади диафрагмы. Значение Кп уменьшается с увеличением диаметра трубопровода иПри малых D и больших значениях β для диафрагм произведение Кш·Кп может превышать значение 1,03, причем в процессе эксплуатации это значение изменяется. Так, при загрязнении и коррозии трубопровода изменяется значение Кщ, причем у диафрагм это влияние выражено сильнее, чем у сопл. Еще большие погрешности могут возникать при коррозии сужающего устройства или изменении его профиля за счет абразивных свойств среды, причем у диафрагм это также проявляется сильнее, чем у сопл. По этим причинам сужающие устройства должны изготавливаться из твердого коррозионно-стойкого материала.
Таким образом, общие уравнения расхода, учитывающие конкретные условия эксплуатации для диафрагм, имеют вид:
объемного
В уравнениях расхода для сопл и труб Вентури коэффициент Кп отсутствует, т.е. К = 1. В показывающих дифманометрах — расходомерах и вторичных приборах, в которых отсутствуют вычислители, все величины, входящие в (12.11), (12.12), принимаются постоянными. В случае массового расхода
и
в случае объемного
и
В эксплуатационных условиях возможно изменение р, влияющее на коэффициенты kм, k0 и градуировочную характеристику. Существенное изменение плотности среды обычно наблюдается при изменении температуры и давления газа. Если изменение плотности среды сопровождается изменением е, то в этом случае показания массового расходомера надо умножить на множитель
а объемного — на множитель
где действительные и градуировочные значения плотности и коэффициента расширения
Насколько существенно влияние изменения плотности на результаты измерения, можно понять из следующего примера. Предположим, что сужающее устройство рассчитано на измерение расхода природного газа при температуре 20 °.С. Действительная температура газа при неизменном давлении составляет 5 °С. Это вызывает такое изменение плотности, что поправочный множитель без учета изменения e составит
т.е. изменение температуры от 20 до 5 °С может вызвать погрешность измерения расхода природного газа в 2,6 %. При значительных и частых колебаниях плотности целесообразно использование микропроцессорных дифманометров или микропроцессорных вторичных приборов, в которых при расчете расхода по уравнениям (12.11), (12.12) используются либо показания плотномеров, либо при контроле давления и температуры рассчитанные фактические значения р и ε.
Установка СУ вызывает потерю давления рп, которая зависит от типа сужающего устройства и β. При одинаковых β максимальные потери, определяемые уравнением имеет диафрагма и минимальные труба Вентури.