§3. Критерий предельного уровня.
Критерий предельного уровня не дает оптимального решения, максимизирующего, например, прибыль или минимизирующего затраты. Скорее он соответствует определению приемлемого способа действий.
Пример 3. Предположим, что величина спроса x в единицу времени (интенсивность спроса) на некоторый товар задаётся непрерывной функцией распределения f(x). Если запасы в начальный момент невелики, в дальнейшем возможен дефицит товара. В противном случае к концу рассматриваемого периода запасы нереализованного товара могут оказаться очень большими. В обоих случаях возможны потери.
Т.к. определить потери от дефицита очень трудно, ЛПР может установить необходимый уровень запасов таким образом, чтобы величина ожидаемого дефицита не превышала А1 единиц, а величина ожидаемых излишков не превышала А2 единиц. Иными словами, пусть I – искомый уровень запасов. Тогда
ожидаемый дефицит = ,
ожидаемые излишки =.
При произвольном выборе А1 и А2 указанные условия могут оказаться противоречивыми. В этом случае необходимо ослабить одно из ограничений, чтобы обеспечить допустимость.
Пусть, например,
Тогда
=
= 20(ln
+
– 1)
=
= 20(ln
+
– 1)
Применение критерия предельного уровня приводит к неравенствам
ln I – ? ln 20 –
– 1 = 1.996 –
ln I – ? ln 10 –
– 1 = 1.302 –
Предельные значения А1 и А2 должны быть выбраны так, что бы оба неравенства выполнялись хотя бы для одного значения I.
Например, если А1 = 2 и А2 = 4, неравенства принимают вид
ln I – ? 1.896
ln I – ? 1.102
Значение I должно находиться между 10 и 20, т.к.
именно в этих пределах изменяется спрос. Из таблицы видно, что оба условия выполняются для I, из интервала (13,17)
I | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
ln I – ![]() | 1.8 | 1.84 | 1.88 | 1.91 | 1.94 | 1.96 | 1.97 | 1.98 | 1.99 | 1.99 | 1.99 |
ln I – ![]() | 1.3 | 1.29 | 1.28 | 1.26 | 1.24 | 1.21 | 1.17 | 1.13 | 1.09 | 1.04 | 0.99 |
Любое из этих значений удовлетворяет условиям задачи.