1.7. Условная вероятность и простейшие основные формулы.
Мы уже говорили, что в основе определения вероятности события лежит некоторая совокупность условий. Если никаких ограничений, кроме условий, при вычислении вероятности не налагается, то такие вероятности называются безусловными.
Однако в ряде случаев приходится находить вероятности событий при дополнительном условии, что произошло некоторое событие В, имеющее не нулевую вероятность, т.е . Данные вероятности мы будем называть условными и обозначать символом ; это означает вероятность события А при условии, что событие В произошло.
Пример 1. Брошены две игральные кости. Чему равна вероятность того, что сумма выпавших на них очков равна 8 (событие A), если известно, что эта сумма есть четное число (событие В)?
Все возможные случаи, которые могут представиться при бросании двух костей, мы запишем в таблице 1.7.1, каждая клетка которой содержит запись возможного события: на первом месте в скобках указывается число очков, выпавших на первой кости, на втором месте — число очков, выпавших на второй кости.
Табл. 1.7.1
(1,1) | (2,1) | (3,1) | (4,1) | (5,1) | (6,1) |
(1,2) | (2,2) | (3,2) | (4,2) | (5,2) | (6.2) |
(1,3) | (2,3) | (3,3) | (43) | (5,3) | (63) |
(1,4) | (2,4) | (3,4) | (4,4) | (5,4) | (6,4) |
(1,5) | (2,5) | (3,5) | (4,5) | (5,5) | (6,5) |
(1,6) | (2,6) | (3,6) | (4,6) | (5,6) | (6,6) |
Общее число возможных случаев — 36, благоприятствующих событию A — 5.
Таким образом, безусловная вероятность .Если событие В произошло, то осуществилась одна из 18 (а не 36) возможностей и, следовательно, условная вероятность равна .
Пример 2. Из колоды карт последовательно вынуты две карты. Найти: а) безусловную вероятность того, что вторая карта окажется тузом (неизвестно, какая карта была вынута вначале), и б) условную вероятность, что вторая карта будет тузом, если первоначально был вынут туз.
Обозначим через A событие, состоящее в появлении туза на втором месте, а через В—событие, состоящее в появлении туза на первом месте. Ясно, что имеет место равенство .
В силу несовместимости событий АВ и АВ имеем: .
При вынимании двух карт из колоды в 36 карт могут произойти 36•35 (учитывая порядок!) случаев. Из них благоприятствующих событию АВ — 4•3 случаев, а событию — 32 • 4 случаев. Таким образом,
Если первая карта есть туз, то в колоде осталось 35 карт и среди них только три туза. Следовательно, .
Общее решение задачи нахождения условной вероятности для классического определения вероятности не представляет труда. В самом деле, пусть из n единственно возможных, несовместимых и равновероятных событий событию А благоприятствует m событий. Если событие В произошло, то это означает, что наступило одно из событий , благоприятствующих В.
При этом условии событию А благоприятствуют r и только r событий Aj , благоприятствующих АВ. Таким образом,(1.7.1) |
Точно так же можно вывести, что
(1.7.2) |
Понятно, что
(1.7.3) |
т. е. вероятность произведения двух событий равна произведению вероятности одного из этих событий на условную вероятность другого при условии, что первое произошло.
Теорема умножения применима и в том случае, когда одно из событий А или В есть невозможное событие, так как в этом случае вместе с имеют место равенства и .
Условная вероятность обладает всеми свойствами вероятности. В этом легко убедиться, проверив, что она удовлетворяет всем свойствам, сформулированных в предыдущих параграфах. Действительно, первое свойство выполняется очевидным образом, поскольку для каждого события А определена неотрицательная функция . Если , то .
Проверка третьего свойства также не составляет труда и мы предоставляем читателю ее осуществление.
Заметим, что вероятностное пространство для условных вероятностей задается следующей тройкой .
Определение 1. Говорят, что событие А независимо от события В, если имеет место равенство т. е. если наступление события В не изменяет вероятности появления события А.
Если событие А независимо от В, то имеет место равенство . Отсюда находим: т. е. событие В также независимо от А. Таким образом, свойство независимости событий взаимно.
Если события А и В независимы, то независимы также события А и . Действительно, так как и по предположению , то .
Отсюда мы делаем важное заключение: если события А и В независимы, то независимы также каждые два события.
Понятие независимости событий играет значительную роль в теории вероятностей и в ее приложениях. В частности, большая часть результатов, изложенных в настоящем пособии, получена в предположении независимости тех или иных рассматриваемых событий.
Так, например, ясно, что выпадение герба на одной монете не изменяет вероятности появления герба (решки) на другой монете, если только эти монеты во время бросания не связаны между собой (например, жестко не скреплены). Точно так же рождение мальчика у одной матери не изменяет вероятности появления мальчика (девочки) у другой матери. Это — события независимые.
Для независимых событий теорема умножения принимает особенно простой вид, а именно, если события A и В независимы, то .
Мы обобщим теперь понятие независимости двух событий на совокупность нескольких событий.
Определение 2. События называются независимыми в совокупности, если для любого события из их числа и произвольных из их же числа события и взаимно независимы. В силу предыдущего это определение эквивалентно: при любых и .
Заметим, что для независимости в совокупности нескольких событий недостаточно их по парной независимости. В этом можно убедиться на следующем простом примере.
Пример С.Н. Бернштейна. Представим себе, что грани тетраэдра окрашены: 1-я — в красный цвет (A), 2-я — в зеленый (В), третья — в синий (С) и 4-я — во все эти три цвета (AВС). Легко видеть, что вероятность выпадения грани, на которую упадет тетраэдр при бросании, и своей окраске иметь красный цвет равна 1/2: граней четыре и две из них имеют в окраске красный цвет.
Таким образом, . Точно так же можно подсчитать, что события A,В,С, таким образом, попарно независимы.
Однако, если нам известно, что осуществились события В и С, то заведомо осуществилось и событие A, т. е. .
Таким образом, события A,В,С в совокупности зависимы. Таким образом, в общем случае при по определению .
(В случае условная вероятность остается неопределенной.) Это позволяет нам перенести автоматически на общее понятие вероятности все определения и результаты настоящего параграфа.