Необхідна умова екстремуму функції багатьох змінних.
Нехай функція z=f(x;y) визначена в деякій області точки (х0,у0). Кажуть, що функція z=f(x;y) має в точці (х0,у0) строгий максимум (мінімум), якщо f(x;y)f(x0;y0)) для всіх точок (х;у), достатньо близьких до х0, у0. Точка (х0,у0) – точка максимуму (мінімуму).
Максимум і мінімум функції називають екстремумами функціями.
Теорема 1 (необхідні умови екстремуму).
Якщо диференційована функція z=f(x;y) має екстремум в точці Р0 (х0,у0), то її частинні похідні першого порядку в цій точці дорівнюють нулю, тобто , 23.
Еще по теме Необхідна умова екстремуму функції багатьох змінних.:
-
Аналитическая геометрия -
Вариационное исчисление -
Векторный и тензорный анализ -
Высшая геометрия -
Высшая математика -
Вычислительная математика -
Дискретная математика -
Дифференциальное и интегральное исчисление -
Дифференциальные уравнения -
Исследование операций -
История математики -
Комплексное исчисление -
Линейная алгебра -
Линейное программирование -
Математика для экономистов -
Математическая логика -
Математическая физика -
Математический анализ -
Пределы -
Ряды -
Статистика -
Теория вероятностей -
Теория графов -
Теория игр -
Теория принятия решений -
Теория случайных процессов -
Теория чисел -
Функциональный анализ -
-
Архитектура и строительство -
Безопасность жизнедеятельности -
Библиотечное дело -
Бизнес -
Биология -
Военные дисциплины -
География -
Геология -
Демография -
Диссертации России -
Естествознание -
Журналистика и СМИ -
Информатика, вычислительная техника и управление -
Искусствоведение -
История -
Культурология -
Литература -
Маркетинг -
Математика -
Медицина -
Менеджмент -
Педагогика -
Политология -
Право России -
Право України -
Промышленность -
Психология -
Реклама -
Религиоведение -
Социология -
Страхование -
Технические науки -
Учебный процесс -
Физика -
Философия -
Финансы -
Химия -
Художественные науки -
Экология -
Экономика -
Энергетика -
Юриспруденция -
Языкознание -