<<
>>

17. 3 Выпуклость, вогнутость, точки перегиба. Асимптоты.

Функция называется выпуклой (вогнутой) на интервале , если её график лежит под касательной (над касательной), проведённой к графику данной функции, в любой точке интервала .

Иногда выпуклость называют выпуклостью вверх, а вогнутость – выпуклостью вниз.

Если функция дважды дифференцируема на интервале и () при всех , то функция является вогнутой (выпуклой) на .

Точка , принадлежащая области определения функции , называется точкой перегиба функции, если при переходе через неё меняется направление выпуклости функции. Точка при этом называется точкой перегиба графика функции.

Точка называется точкой возможного перегиба функции , если в этой точке или не существует.

Эти точки разбивают область определения функции на интервалы выпуклости и вогнутости.

Необходимое условие перегиба. Если - точка перегиба функции , то или не существует.

Достаточное условие перегиба. Пусть функция дважды дифференцируема в окрестности точки , в которой или не существует. Тогда, если производная , при переходе через точку меняет знак, то - точка перегиба.

Прямая называется асимптотой графика функции , если расстояние от точки до прямой стремится к нулю при бесконечном удалении точки от начала координат.

Прямая называется вертикальной асимптотой графика функции , если хотя бы один из односторонних пределов или равен бесконечности.

Прямая является вертикальной асимптотой, тогда и только тогда, когда является точкой бесконечного разрыва функции . Непрерывные функции не имеют вертикальных асимптот.

Прямая называется наклонной асимптотой графика функции при (при ), если (соответственно, ). Частным случаем наклонной асимптоты (при ) является горизонтальная асимптота.

Прямая является наклонной асимптотой графика функции при (при ) тогда и только тогда, когда одновременно существуют пределы: и (соответственно, и ).

<< | >>
Источник: Бикчурина Л.Ж., Тимергалиев С.Н., Углов А.Н.. Математика. Часть 1: Учебно-методический комплекс для студентов заочной и дистанционной форм обучения по экономическим специальностям. / Составители: Бикчурина Л.Ж., Тимергалиев С.Н., Углов А.Н. Набережные Челны: Изд-во: ИНЭКА, 2006, 125 с.. 2006

Еще по теме 17. 3 Выпуклость, вогнутость, точки перегиба. Асимптоты.:

  1. § 37. Направление выпуклости графика функции,точки перегиба
  2. §39. Общая схема исследования функции и построения её графика
  3. ПРИЛОЖЕНИЕ.
  4. 3.4. Исследование функций с помощью производных.
  5. Содержание дисциплины
  6. Схема исследования функций
  7. О формулах Френе.
  8. Перечень вопросов к экзамену на первом курсе
  9. 25.Нахождение наиб и наим значения функции.Исследование ф-ии с помощью производных.
  10. 4.2. СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ
  11. 2.1 Содержание дисциплины (наименование и номера тем).
  12. 5.2. Вопросы к экзамену (1 семестр).
  13. 6.1. Образец решения контрольных задач типового варианта.
  14. 17. 3 Выпуклость, вогнутость, точки перегиба. Асимптоты.
  15. 17.4 Построение графиков функций.