ПРЕДМЕТ ДИСКРЕТНОЙ МАТЕМАТИКИ
Дискретная математика, или дискретный анализ – область математики, которая занимается исследованием структур и задач на конечных множествах. Поэтому в качестве синонима иногда используется термин «конечная математика».
Можно считать общепринятым деление математики на непрерывную и дискретную. Последняя представляет собой важное направление, имеющее характерные для него предмет исследований, методы и задачи. Специфика задач дискретной математики в первую очередь предполагает отказ от основных понятий классической математики – предела и непрерывности. Поэтому для задач дискретной математики обычные средства классического анализа являются вспомогательными.Дискретная и непрерывная математика взаимно дополняют друг друга. Понятия и методы одной часто используются в другой. Один и тот же объект может рассматриваться с двух точек зрения и в зависимости от этого выбирается непрерывная или дискретная математика.
При исследовании, анализе и решении управленческих проблем, моделировании объектов исследования и анализа широко используются дискретные методы формализованного представления, являющиеся предметом рассмотрения в дискретной математике. К ним относятся методы, основанные на теоретико-множественных представлениях, графы, алгоритмы, математическая логика и др.
Дискретная математика предлагает:
· универсальные средства (языки) формализованного представления;
· способы корректной переработки информации, представленной на этих языках;
· возможности и условия перехода с одного языка описания явлений на другой с сохранением содержательной ценности моделей.
Сегодня дискретная математика является важным звеном математического образования. Умение проводить анализ, композицию и декомпозицию информационных комплексов и информационных процессов – обязательное квалификационное требование к специалистам в области информатики.