Критерии выбора параметров лазерного излучения для лечебных целей
Эффект лазерного воздействия на ткани глаза зависит от трех основных параметров лазерного излучения: длины волны, энергетических характеристик (мощности, энергии в импульсе) и режима генерации (непрерывный, импульсный).
Рассмотрим значения каждого из них в перечисленной последовательности.Выбор длины волны излучения для воздействия на структуры глазного яблока зависит от их абсорбционных характеристик для каждой из длин волн. Спектр поглощения данной ткани определяется типом основных поглощающих центров, или хромофоров, а также содержащейся в ткани водой. Так, роговица абсорбирует (поглощает) излучение ультрафиолетовой части спектра за счет аминокислот, белков и нуклеиновых кислот, которые играют роль хромофора в этом случае (рис. 142), а также ИК-излучение с X = 1,5 мкм и более, но роль хромофора в этом случае, с ростом длины волны, начинает играть преимущественно содержащаяся в ее ткани вода. Другими словами, роговица является непрозрачной для УФ- и ИК-излучения указанного диапазона, и такие излучения могут быть использованы для воздействия на нее в целях повреждения или лечения. В то же время роговица не содержит хромофоров для видимой в ближней ИК-части спектра и излучения этих длин волн свободно пропускаются ею, достигая глубжележащих структур.
Оболочки и структурные элементы глазного дна также по-разному поглощают излучения видимого и ближнего ИК-диапазона длин волн, пропускаемого роговицей. Меланиновые гранулы пигментного эпителия и сосудистой оболочки являются лучшим хромофором для этого диапазона длин волн, они поглощают 70% лучей сине-зеленого цвета, более 50% — красного и около 15% — ближнего инфракрасного. Вследствие этого данные излучения могут быть эффективно использованы для воздействия на глазное дно. При этом следует также принимать во внимание, что все гемоглобинсодержащие структуры на глазном дне (сосуды, кровоизлияния) прекрасно поглощают сине-зеленое или чисто зеленое излучение, например, аргонового лазера или Nd:YAG- лазеров с удвоением частоты, но слабо поглощают красные лучи, например,
Рис.
142. Процент поглощения УФ-излучения роговицей (а), хрусталиком (б) и стекловидным телом (в) в зависимости от разницы в длине волны.криптонового и диодного лазеров, которые вследствие этого неэффективны для прямой коагуляции сосудов.
Необходимо учитывать также особенности абсорбции излучений разных длин волн сетчаткой. Последняя поглощает более 10% коротковолнового синезеленого излучения, что может привести к ее неоправданно массивному повреждению при необходимости коагулировать субретинальные структуры. Опасность повреждения нервных волокон сетчатки еще более возрастает при применении этих длин волн в макулярной области, желтый пигмент которой их интенсивно поглощает. В связи с этим для работы в этой области сетчатки оптимальны лазеры, излучающие в более длинноволновой части спектра, в частности диодный лазер (X = 0,81 мкм). Таким образом, роль длины волны излучения лазеров в конечном результате его воздействия на ткань реализуется в строгой зависимости от спектральных характеристик самой ткани и может быть представлена в виде схемы (рис. 143).
Ориентируясь на данную схему, следует иметь в виду, что роговица по- разному поглощает излучение и в пределах УФ-диапазона. Чем больше длина волны, тем большая часть излучения проникает и в более глубоколежащие образования, в частности во влагу передней камеры и стекловидное тело, а самая длинная часть может достигать и сетчатки, в особенности при афакии.
Такая же закономерность характерна и для излучения ИК-диапазона. Так, излучение полупроводникового лазера длиной волны 0,81 мкм на 97% проходит через оптические среды и достигает глазного дна, т. е. в таком же проценте, как и видимое красное, и лишь 3% его поглощают оптические среды. Но при увеличении длины волны до 1 мкм (неодимовый лазер) оптические среды поглощают уже 67% излучения и лишь 33% достигает глазного дна. Отсюда следует, что при использовании данного лазера для коагуляции образований на глазном дне большими дозами излучения неизбежно тепловое повреждение ткани роговицы и хрусталика.
В не меньшей степени эффект лазерного воздействия определяется энергетическими параметрами излучения. Излучение малой плотности мощности
Рис. 143. Эффекты, вызываемые в оболочках глаза лазерным излучением оптического диапазона длин волн (в мкм) в зависимости от длины волны и абсорбционных характеристик тканей (по: Sliney, Wolbarsht, 1980).
порядка 0,1 мВт/см2 не вызывает повреждений биологических тканей, но оказывает биостимулирующий эффект, наличие которого установлено на многих биологических объектах [17]. Точный механизм стимулирующего действия лазерного излучения неясен до настоящего времени, но предполагается, что в основе его лежит взаимодействие света с фотосенсибилизаторами — веществами, молекулы которых поглощают свет и передают энергию другим молекулам, лишенным этой способности. Ускорение регенераторного процесса под влиянием лазерного воздействия в целом складывается из уменьшения длительности фаз воспаления и интенсификации восстановительных механизмов. Происходит изменение временных параметров процессов, составляющих эти фазы: сосудистой и макрофагальной реакций, формирования грануляционной ткани, созревания соединительной ткани, восстановления органоспецифичности (полнота дифференцировки специализированных структур). На уменьшение длительности фаз воспалительного процесса указывают многие исследователи, и, что особенно важно, при этом отмечено подавление экссудативной и инфильтративной реакций. Воздействие лазерным излучением на поврежденную ткань приводит к уменьшению интерстициального и внутриклеточного отеков, что связывают с усилением кровотока в тканях, активизацией транспорта веществ через сосудистую стенку, а также с интенсивным формированием сосудов, особенно капилляров. Уменьшение отека и тканевого напряжения в пораженной ткани (очаге поражения), естественно, сопровождается ослаблением болевого синдрома.
Способность лазерного излучения активизировать процессы метаболизма клеток и тканей в наибольшей степени проявляется в условиях патологии.
Ускорение дифференцировки клеток и восстановления их функциональной активности лежит в основе лазерной стимуляции собственно регенеративного процесса. Таким образом, лазерное воздействие приводит к своего рода сбалансированности функций отдельных взаимосвязанных и взаимозависимых групп клеточных элементов. Одним из эффектов воздействия лазерного излучения на регенерирующую ткань является повышение митотической активности клеток, при этом происходит изменение временной характеристики митотического цикла — укорачиваются его фазы. Отмечается также снижение количества хромосомных нарушений при делении клеток. Большое значение в чувствительности биологических объектов к лазерному воздействию имеет спектральная характеристика самого субстрата — соответствие максимума поглощения длин волн излучения. В связи с этим лазерную терапию следует проводить с учетом оптических свойств тканей, повышая восприимчивость к лазерному облучению путем нанесения специальных веществ на область непосредственного воздействия.Излучение мощностью порядка 0,1-1,0 Вт в зависимости от диаметра и времени воздействия, поглощаясь в ткани, вызывает ее тепловое повреждение, которое проявляется при достижении температуры 45 °С и выше денатурацией и коагуляцией белков. Исходом такого воздействия является слипчивое воспаление, уплотнение ткани за счет образования рубца и ее частичное рассасывание [15]. При дальнейшем увеличении мощности излучения и повышении температуры нагрева выше 100 °С происходит быстрое объемное расширение ткани за счет кипения тканевой жидкости с образованием газовых пузырей, которые, расширяясь, приводят к механическому разрыву ткани. Этот процесс сопровождается возникновением ультразвуковых колебаний, которые быстро затухают по мере удаления от эпицентра воздействия, но могут приводить к дистантному повреждению тканей, особенно внутри полого органа, к каким относится глазное яблоко.
Дальнейшее увеличение мощности излучения до величин, способных нагреть ткань до температуры 200-300 °С, приводит к ее обугливанию, выгоранию и даже к испарению твердых составляющих ткани.
Этот эффект обычно обозначают термином «фотоабляция» и используют в офтальмологии достаточно широко, в частности для выжигания небольших, хорошо пигментированных опухолей век и слезного мясца, а также в рефракционной хирургии. Первоначально этот термин использовали для определения испарения с помощью УФ-лазеров, но в широком смысле он характеризует аналогичный эффект немедленного удаления ткани и другими, в частности ИК-лазерами.Эффект воздействия лазерного излучения на ткань определяется не только длиной волны и мощностью излучения, но и временем, в течение которого при других равных условиях это излучение воздействует на нее, или, другими словами, режимом работы лазера — импульсным, моноимпульсным или непрерывного излучения. Импульсные лазеры, как указывалось выше, генерируют излучение малой фиксированной длительности, поэтому степень нагрева ткани можно регулировать только за счет одного параметра — энергии в импульсе. Но увеличение поглощенной энергии в ткани за столь короткое время сверх определенной величины вследствие, например, естественных колебаний ее в импульсе или более выраженной пигментации в данной точке ткани из-за малой «терапевтической широты» импульсных излучений чревато образованием пара и акустической волны с неизбежным разрывом ткани. Эта особенность импульсных лазеров свободной генерации стала главной причиной практически полного отказа от их использования для целей коагуляции тканей глазного дна.
За еще более короткое время воздействия энергией лазеров (1-10 мДж), работающих в режимах модулированной добротности или синхронизации мод резонатора, при острой фокусировке с углом сходимости 16-18° в фокусе оптической системы (диаметр пятна 10-30 мкм) достигается плотность мощности более 1010 Вт/см2. При этом напряженность электрической составляющей излучения превышает 1010 Вт/см2. Это вызывает микролокальный электрический пробой с образованием плазмы. В эпицентре пробоя возникает вторичная мощная, быстро затухающая во времени и пространстве локальная гидродинамическая волна, и избыточное давление достигает значения 103-104 ата, действие которого значительно превышает силу межмолекулярных связей в биоструктурах. Это и является причиной имеющих место локальных, соответствующих размеру диаметра фокального пятна микрофотодеструкций в глазных тканях в результате действия ультракоротких лазерных импульсов.
Такие лазеры (как правило, Nd:YAG-лазеры с X = 1,06 мкм) широко используются в офтальмологии для разрушения помутневшей задней капсулы хрусталика, витреоретинальных шварт, иридотомии и других подобных целей.