<<
>>

1.8. Комбинированный метод

Пусть , а и сохраняют постоянные знаки на отрезке .

Соединяя методы хорд и касательных, получаем метод на каждом этапе, которого находим значения по недостатку и значения по избытку точного корня уравнения . Пусть – последовательные приближения метода хорд, – последовательные приближения метода касательных. Пошаговая иллюстрация представлена на рис. 11.

Возможны 4 случая: 1) , 2) ,

3) , 4) ,

которые можно свести к первому случаю.

y

x0=а х1 х2

x* х

Рис. 11

.

. .

Очевидно, что и .

По окончании процесса за значение корня лучше всего взять среднее арифметическое полученных значений: .

Пример. Вычислить положительный корень уравнения . Так как , то .

, на , поэтому .

.

.

; .

Так как , то

; .

Так как , то .

2.

<< | >>
Источник: Котюргина, А.С.. Численные методы: учеб. пособие / А. С. Котюргина. – Омск: Изд-во ОмГТУ,2010. – 84 с.. 2010

Еще по теме 1.8. Комбинированный метод: