<<
>>

Признак сравнения рядов с неотрицательными членами.

Пусть даны два ряда и при un, vn ? 0.

Теорема. Если un £ vn при любом n, то из сходимости ряда следует сходимость ряда , а из расходимости ряда следует расходимость ряда .

Доказательство. Обозначим через Sn и sn частные суммы рядов и . Т.к. по условию теоремы ряд сходится, то его частные суммы ограничены, т.е. при всех n sn < M, где М – некоторое число. Но т.к. un £ vn, то Sn £ sn то частные суммы ряда тоже ограничены, а этого достаточно для сходимости.

Пример. Исследовать на сходимость ряд

Т.к. , а гармонический ряд расходится, то расходится и ряд .

Пример. Исследовать на сходимость ряд

Т.к. , а ряд сходится ( как убывающая геометрическая прогрессия), то ряд тоже сходится.

Также используется следующий признак сходимости:

Теорема. Если и существует предел , где h – число, отличное от нуля, то ряды и ведут одинаково в смысле сходимости.

<< | >>
Источник: Архаров Евгений Валерьевич. Учебно–методический комплекс по дисциплине Математика Нижний Новгород, 2011. 2011

Еще по теме Признак сравнения рядов с неотрицательными членами.:

  1. § 59. Достаточные условия сходимости ряда с неотрицательными членами
  2. Признак сравнения рядов с неотрицательными членами.
  3. Положительные ряды
  4. Концептуализация предлогов в философском и поэтическом тексте