Тема 3. Системылинейных уравнений. Модель Леонтьева.
…Система уравнений вида: называется системой линейных уравнений с неизвестными.
Числа называются коэффициентами, - свободными членами, - неизвестными системы.В матричной форме система имеет вид: ,
где ,,. Здесь -матрица системы,
-матрица-столбец неизвестных,-матрица-столбец свободных членов.
Если , то система называется однородной, в противном случае неоднородной.
Система, матрица которой является треугольной с диагональными элементами , называется треугольной. Система, матрица которой является трапециевидной, называется трапециевидной.
Решением системы называется всякий упорядоченный набор чисел , обращающий каждое уравнение системы в равенство.
Совокупность всех решений называется множеством решений системы.Система называется совместной, если она имеет, по крайней мере, одно решение; определённой, если она имеет только одно решение; неопределённой, если она имеет бесконечно много решений; несовместной, если она не имеет решений.
Однородная система уравнений всегда совместна, так как всегда имеет, по крайней мере, нулевое решение . Треугольная система является определённой, трапециевидная система – неопределённой.
Две системы называются эквивалентными, если множества их решений совпадают.
Элементарными преобразованиями систем уравнений называются:
1) перестановка уравнений;
2) перестановка местами слагаемых в каждом из уравнений системы;
3) умножение уравнения на число, отличное от нуля;
4) прибавление к уравнению другого, умноженного на любое число;
5) вычёркивание уравнения вида: .
Основными точными методами решения систем линейных уравнений являются методы: Крамера, обратной матрицы и Гаусса.
Если число уравнений в системе совпадает с числом неизвестных и определитель матрицы системы , то система имеет единственное решение, которое можно найти:
а) методом Крамера по формулам: , , где - определитель, получаемый из определителя матрицы системы заменой -ого столбца на столбец свободных членов;
б) методом обратной матрицы по формуле .
Методом Гаусса находят решение произвольной системы линейных уравнений. Метод состоит в приведении системы уравнений, с помощью элементарных преобразований, к системе специального вида, эквивалентной исходной, решение которой очевидно. Преобразования по методу Гаусса выполняют в два этапа. Первый этап называют прямым ходом, второй - обратным.
В результате прямого хода выясняют: совместна или нет система и если совместна то, сколько имеет решений - одно или бесконечно много, а также, в случае бесконечного множества решений, указывают базисные и свободные неизвестные для записи общего решения системы. Преобразования прямого хода выполняют, как правило, над расширенной матрицей системы , которую получают, приписывая справа к матрице системы столбец свободных членов . В результате элементарных преобразований строк и перестановкой столбцов, матрица системы должна быть приведена к матрице треугольного или трапециевидного вида с элементами . При этом, система уравнений, матрица которой , является треугольной с диагональными элементами , будет иметь единственное решение; система уравнений, матрица которой , является трапециевидной с элементами , будет иметь бесконечно много решений.
Если, при выполнении преобразований расширенной матрицы , в преобразованной матрице появится строка , где , то это говорит о несовместности исходной системы уравнений. Базисные неизвестные указывают, выписывая базисный минор преобразованной матрицы системы . Базисными являются неизвестные преобразованной системы, столбцы коэффициентов при которых образуют базисный минор (определитель максимального порядка, отличный от нуля). Свободными являются неизвестные, не являющиеся базисными.В результате обратного хода находят решение системы, записывая его в виде общего решения, если их бесконечно много. Преобразования обратного хода часто выполняют, над уравнениями системы, соответствующей последней расширенной матрице прямого хода. В случае единственного решения, его получают, находя последовательно значения всех неизвестных из уравнений системы, начиная с последнего. В случае, когда решений бесконечно много, их записывают в виде общего решения. Для этого свободным неизвестным придают разные произвольные постоянные значения: , ,…, , и последовательно из уравнений системы, начиная с последнего, находят значения всех базисных неизвестных. Полученное решение называют общим. Придавая произвольным постоянным, конкретные значения, находят частные решения системы уравнений.
Уравнениями межотраслевого баланса, описывающими процесс производства и потребления продукции -отраслевой экономикой, называют уравнения () , где - объём выпуска валовой продукции -ой отраслью, - объём продукции -ой отрасли, потребляемый -ой отраслью для производства своей продукции, - объём выпуска конечной продукции -ой отраслью, предназначенной для реализации в непроизводственной сфере.
Если предположить, что (гипотеза линейности), где - постоянные числа, характеризующие технологию производства (показывают затраты продукции -ой отрасли на производство 1 единицы продукции -ой отрасли) и называемые коэффициентами прямых затрат, то уравнения межотраслевого баланса запишутся в виде: (). Их называют уравнениями линейного межотраслевого баланса или линейной моделью Леонтьева многоотраслевой экономики и записывают, как правило, в матричном виде: , где - единичная матрица; - матрица коэффициентов прямых затрат; и - векторы (матрицы-столбцы) валового и конечного продукта, соответственно.
Основная задача линейного межотраслевого баланса состоит в отыскании вектора , который при известной матрице прямых затрат обеспечивает заданный вектор конечного продукта . Вектор находится по формуле , где - матрица коэффициентов полных затрат, элемент которой показывает величину валового выпуска продукции -ой отрасли, необходимой для обеспечения выпуска 1 единицы конечного продукта -ой отрасли. Решение такой задачи существует только для продуктивных матриц .
Матрица называется продуктивной, если для любого вектора существует решение уравнения Леонтьева: .
Матрица будет продуктивной, если сумма элементов по каждому её
столбцу (строке) не превосходит единицы: , причём хотя бы для одного столбца (строки) эта сумма строго меньше единицы.
Чистой продукцией отрасли называется разность между валовой продукцией этой отрасли и затратами продукции всех отраслей на производство данной отрасли. Объёмы выпуска чистой продукции -ой отрасли вычисляют по формулам: ().