<<
>>

SUMMARY

INTRODUCTION

Presently, scientists, politicians and mass media discuss diverse problems of geo-ecology, a discipline studying relationships of human societies and the environment.

The main emphasis is placed on the environmental changes caused by economic activity and specific repercussions these changes have for individuals and societies. In the meantime, the influence of the nature itself is paid much less attention. This book specifically addresses the problem of influence of geodynamic processes on the development and present state of the humanity. The geodynamic processes, understood as those caused by endogenous activity of the Earth, include active tectonics, seismicity and volcanism. Climatic changes are discussed as well, since certain paragenetic links have been established for high-frequency climatic and tectonic variations.

The book demonstrates that both individual human communities, and the society as a whole behave as complex dissipative systems (as understood by I. Prigogine [, , 1986]) of interaction between not only social, political, economic, and technological developments, but also endogenous and climatic environmental processes. A systematic approach to the estimation of the role natural processes play in the development of a society may, in our view, help to avoid lapsing into geodynamic determinism.

We have limited our studies of influence of natural events on individuals and society both in time (the final stage of human history characterized by rise and evolution of productive economy, and civilized societies) and in space (history of societies in the central part of the Alpine-Himalayan orogenic belt and its surroundings). In the ancient time, the region we consider was known as Eastern Oykumena; it gave birth to the earliest productive economies and first civilizations. It encompassed a territory stretching from Egypt, Greece and Black Sea coasts in the west up to India and Central Asia in the east.

The goals and tasks of our studies determined the need for an integrated analysis and correlation of data of Quaternary geology, neotectonics, seismology, volcanology, climatology, hydrology, as well as history, archaeology, biology, and medicine. Such a multi-disciplinary approach requires some terminological explanations. Active tectonics and active fault are meant to understand tectonic manifestations that take place now and are expected in near future. For the studied region, we use these terms referring to tectonic events of the Late Pleistocene and Holocene, i.e., the last 10(0-150 thousand years [, 1983; Trifonov, Machette, 1993]. To estimate recent activity in stable regions, like the East European platform, we also ought to take into account Middle Pleistocene events (within the last 700 thousand years).

The meaning of civilization in this work is two-fold. In a general sense, we use it to define a society development stage opposed to the preceding stage of primitive savagery. A civilization is based on a productive economy that precedes all other civilization attributes and represents a pre-requisite for the latter. In a narrower sense, civilization is understood as a socio-cultural community formed on the basis of universal, i.e., supra-local values reflected in global religions, morality systems, law, and art [ ..., 1999, p. 25]. This understanding means that civilizations can, in particular, differ in social relations. Although todays globalization of economy and infrastructure draws civilizations together, differences between them remain.

The Holocene is assumed to last for 10 thousands years. It is subdivided into Early (Boreal), Middle (Atlantic and Sub-Boreal), and Late (Sub-Atlantic) Holocene with boundaries set respectively at 8-7,7 ka BP (early 6th millennium BC), 5-4.6 ka BP (the first half of the 3rd millennium BC), and 2,5 ka BP (middle of the 1st millennium ) [, 1985].

In this book, we mostly use age estimates derived by historical (preferably, high chronology approach), archaeological and radiocarbon dating methods. Estimating the age of soil horizons by the radiocarbon method, we consider the time span of their formation with due regard to the fact that top soil layer contemporary with a natural, or technological impact is.randomly preserved in the section. As the soil layer preserving on top can be hundreds or even thousand years older than the considered impact, it can be used merely to constrain the earliest possible age of the latter.

Chapters 1 to 4 (Part I) examine influence of individual natural processes on social development in the following order: Climatic Changes and Associated Oceanic Level Variations, Active Tectonics, Strong Seismicity, and Volcanism. Chapters 5-8 (Part II) devote to interaction between natural and social processes. Principles of such interaction are discussed in Chapter 5. In Chapter 6, we base on our studies of the Armenian Upland testsite to describe a relationship between natural and social processes in detail. Chapter 7 presents some results from the studies of specific nature-society complex systems. Sources and social repercussions of the Late Holocene fluctuations of the Caspian Sea and Black Sea levels are discussed. Correlation between changes of climate and geodynamic activity and the largest social-political crises during the Middle and Late Holocene is carried out. Grounds are provided in support of the orbital-astronomic regulation of the synchronous climatic and seismotectonic variations with a frequency from few years up to tens of thousand years. Chapter 8 addresses general regularities of humanity-nature interaction, problems of sustainable development considering effects of geodynamics and natural changes, and implications these regularities have had in the history and will have for the future of Russia. The supporting catalogues of new radiocarbon age estimates and strong earthquakes in the Eastern Oykymena are presented in Annexes 1 and 2.

The main part of this book was written by V.G. Trifonov and A.S. Karakhanian. E.R. Senko and T.P. Ivanova had a leading role in writing Chapter 3 and Section 7,1, respectively. E.R. Senko and V.N. Balassanian helped to compile the Catalogue of Strong Earthquakes in the Region. A. Avagyan, R. Agamirzoev, J. Adjemian, O. Azizbekian,

D. M. Bachmanov, A. Bagdasaryan, M.S. Bayraktutan, A. Chatzipetros, Yu. El-Hair, P.V. Florensky, F. Jamaly, M. Khademi, Kh. Hessami, D. Khondkarian, M.L. Kopp, A.I. Kozhurin, V.K. Kuchay, V.I. Makarov, I. Mariolakos, S. Pavlides, E.A. Rogozhin, T. Zaza, L.M. Rastsvetaev, S.F. Skobelev, and E. Vittori participated in the field works that provided findings used in this book. Field trips to Israel and China were organized by I. Carch and A. Mart, and Prof. Ding Guoyu, respectively. The radiocarbon dating of collected samples was conducted by L.D. Sulerzhitsky (Geological Institute of the Russian Academy of Sciences). Kh.A. Arslanov conducted U-Th dating of Pleistocene shells from. the Zagros, and experts from the Museum of Ancient History in Tehran estimated the age of samples by the thermoluminescent method. P. Avetissian, R. Badaljan and A. Pilipossyan (Armenia) and Kh. Salibi (Syria) characterized the collected samples of ceramics. E.M. Vangengheim identified the collected fossil mammalia and their images in petroglyphs. Consultations and recommendations of Yu.G. Leonov, V.M. Masson, E.E. Milanovsky, S.N. Roerich, D.V. Rundquist, A.L. Yanshin, N.N. Vorontsov, E.A. Lyapunova, R.T. Jrbashyan, A.E. Dodonov, V.I. Zhegallo, K.Kh. Kushnareva, Yu.A. Lavrushin, D.V. Lopatin, K.S. Losev, A.A. Nikonov, S. Stiros, S.K. Tatevian, V.I. Ulomov, V.N. Kholodov, A.L. Chepalyga, N.M. Chumakov, and S.S. Shults, Jr. were extremely useful. E. Abgaryan helped to translate the Summary and S. Arakelian, D.M. Bachmanov, S.V. Oskolkova and R.V. Trifonov helped to illustrate the book. The authors are grateful to all these persons.

Parti

NATURAL PROCESSES INFLUENCING DEVELOPMENT OF CIVILIZATIONS

Chapter 1

CLIMATIC CHANGES AND ASSOCIATED OCEAN LEVEL VARIATIONS

1.1.

Climatic chh∏ges in Easterr Eurrpe in the Lstr Pleistocene and the Holocene

The last glaciation in Europe (often referred to as Wurm, Valday, or Visla glaciation), was preceded by the Mikulino interglacial period that started about 130 ka BP. By that time, the average January temperature in Central Russia was higher and precipitation was more abundant than now. The previous deglaciation caused transgressions in the north (Boreal) and in the south (Karangat in the Azov-Black Sea basin and Khazar in the Caspian). The Early and Late Valday glacial epochs and the Middle Valday interstadial are differentiated within the Valday glaciation period. The Early Valday lasted from 90-70 ka till 478 ka BP, the Middle Valday from 47-48 ka till 24 ka BP, and the Late Valday from 24 ka till 10 ka BP. The Late Valday glaciation was the most inclement time for the whole Pleistocene. The glaciation had two centers: Scandinavian and Novaya Zemlya. For a short period (no more than 4 ka) at the peak of glaciation, the glacial tongue was reaching the Valday Height. Study of a layer with a 14C-measured age of 17460 10 yr in the Western Dvina River yielded estimates of average January and July temperatures that are respectively 10-14 C and 2-3 C lower than the respective values today. The margin of permafrost lowered to 49-50 N [..., 1993].

The peak of the Late Valday glaciation was immediately followed by deglaciation interrupted with episodes of glacier advance. The Holocene started with warming that was more pronounced in the south-west of the Russian Plain [Klimanov, 1995; ..., 1999]. The last half of Atlantics, referred to as the Atlantic Optimum (43 ka BC), was the warmest time in Eastern Europe and other regions of Northern Eurasia. The start of the Sub-Boreal period was marked by considerable cooling and drying of the climate, followed by the next warming. At that stage, temperatures were higher than those observed presently, but lower than those of the Atlantic Optimum.

In the Sub-Atlantic period the climate was, for a greater part, similar to the one observed today, with the climatic optimum in the Middle Age (about 1000 AD, the Vikings Epoch) and the Lesser Scandinavian Glaciation ( 16th-19th centuries, peak at the 17thl century AD) standing out against this background. During the glaciation, ' temperatures were lower compared to the todays values by 2-3 C in the northwest of the plain, and by 1-2 C south of 50 N. The analysis of climate during the last glacial and post-glacial, epochs reveals that cooling and warming correlated with drying and moistening, respectively. During the stages of cooling, values of temperature drop were greater in winter, while the stages of warming were characterized by higher rise of summer temperatures. For the Atlantic Optimum the correlation between warming and moistening was established everywhere, but it was more pronounced in the north of the Russian Plain.

1.2. Climatii chhtges in the EEsieer Oykumenn and surrounding areas during the Late Pleistocene and the Holocene

1.2.1. Plains in Kazakhstan and the Middle Asia. There was general synchronism of climate changes in this region and in Eastern Europe during the Late Pleistocene and the Holocene. Palynology of the Mikulino interglacial in the northwest of Kazakhstan is attributed to a forest-steppe type. During that pluvial time, the Amu-Darya River fell into the Caspian Sea and later formed three deltas in the Southern Aral area. The Zeravshan River

reached the Amy-Darya. The Tedjen and Murgab deltas were located northwards of the their recent location and from time to time these rivers became tributaries of the Amy-Darya. Dry vegetation of steppe and cryogenic structures were typical for the main stage of the last glaciation (20-18 ka BP) in the northwestern Kazakhstan. Climate in the Middle Asia became dry and cool. Supply of water to the southern and eastern Aral region decreased. In the eastern Caspian region, the average annual temperature was 4,5 C lower than today [..., 1993].

Humidification of climate in the Middle Asia started in the end of the Late Pleistocene. The Atlantic Optimum manifested itself in general humidification, which, at least in places, was accompanied by slight decrease of summer temperatures and appearance of hygrophilous and arboreous plants, including broad-leaved species. Drying of die climate in die first half of the 2ndmillennium BC changed to certain humidification in the end of it. The subsequent aridization was interrupted by epochs of relative humidification in the second half of the 1st millennium BC and in the 10*-15* centuries AD in particular. The latter could be accompanied by certain decrease of temperatures (2-2,5 C of the annual average values) in the l3*-14* centuries. The changes of climate settings through the Holocene were reflected in the history of the Amu-Darya-Aral-Sarykamysh-Uzboi-Caspian system. The level of Aral was always higher than the level of the Caspian. The flow of Amu-Darya through Sarighamish to the Caspian began not until a +55 m level was reached (the highest point of Uzboi near Mount Kughenek). By the changes of flow in the Middle and Late Holocene history of this system, it is possible to identify phases of humidification (Atlantic Optimum, the second half of the 1st millennium BC- early 1st millennium AD; 11* - early 16* centuries) and aridization (the first half of the 2nd millennium and, perhaps, 8th-7* centuries BC, 3rd_10* centuries AD.) In the meantime, within some periods the Amu-Darya River discharged the largest part of its water either to Aral, or to Sarychamysh and Uzboi. Most probably, this was determined by tectonic events (see Chapter 5.)

1.2.2. Mountainn in ns entral Aria and the nohthweshern Hindustan. The eariy strge of the Late Pleistocene was characterized by warm climate. Manifestations of the earlier Late Pleistocene glaciation are represented in the Pamirs and Tien Shan. During the epoch, corresponding to the Middle Va^ay (Wurm), warm and humid climate was predominant in Central Asian mountains and in adjacent parts of Hindustan. The last Late Pleistocene glaciation, corresponding (perhaps, with a delay in some areas) to the Late Valday glaciation, was accompanied by cooling and general arization. The latter was caused by the Central Asian baric maximum and reduction of influence of the Indian Ocean monsoons because of the tectonic uplift of the mountains, particularly the Himalayas and Tibet. The southern slopes of the Himalayas and the northwestern Hindustan were not taken up by cooling, but aridization was significant there.

Warming in Boreal, and, in places, pre-Boreal, occurred against preservation of relatively dry conditions. The humidification of the climate covered the Outer Himalayas and the northwestern Hindustan. Almost everywhere, manifestations of the climatic optimum included increase of either temperatures, or humidity, or both. The north of Tibet was the only cold and dry area. Warming and humidification in most of the mountainous systems lasted from the second half of the 6th till the middle of the 2nd millennium BC with its peak around the 3rd millennium BC. The warming then changed to cooling and hridizhtion. In the Indus Valley and in the NW of Hindustan, climatic optimum of the 6* - early 2nd millennia BC was later followed by arization about 1800 BC.

In the mountains, glaciers appeared and grew again in the Sub-Atlantic period, being, nevertheless, considerably inferior to the glaciers of the Late Pleistocene. Peaks of glaciation corresponded approximately to a period about 1000 BC and the 17t^-19* centuries AD. In Northern India, relative improvement of climate conditions against the background of incipient arization took place late in the 1stmillennium BC and in the first half of the 1s* millennium AD; the conditions worsened in the second half of the 1stmillennium AD and improved relatively in the first half of the 2nd millennium (the Sub-Atlantic Optimum, or Vikings

Epoch). The climate again became worse in the 16*-19* centuries, which corresponds to the Lesser Scandinavian Glaciation.

1.2.3. The Caucasus and Iran. In the Caucasus, the Late Pleistocene began with a warm and humid interglacial period. This was followed with a two-stage glaciation in the Caucasus and other high mountains, setting in cold and arid climate [..., 1993; , 1985]. Certain humidification was recorded for the interstadial. In a periglacial area, drastic aridiza- tion in the second glacial phase manifested itself everywhere, including the Red Sea, while cooling of that period was more pronounced in latitudes farther to the north. Lake Van was under considerable transgression, which, however, could be caused by tectonic motions and volcanism.

Deglaciation and associated gradual warming and humidification started in different places at different time [, 1991; ..., 1993; , , 1985; , 1985; Taviani, 1995]. In the Eastern Tran-Caucasus and Northwestern Zagros, these changes became evident as early as 14 ka BP, when the Persian Gulf and the Red Sea still had the dry climate of the glacial epoch. The warming continued in the Boreal, accompanied by humidification everywhere except of the Black Sea slope of the Northwestern Caucasus and, possibly, Lake Van region. Warm and humid conditions continued to exist during the Atlantic period, and in places became even more pronounced. Transgressions of the Black Sea and the Caspian Sea took place that time. Favorable conditions in some areas (Northwestern Caucasus, Northwestern Zagros, Urmiye Lake and Persian Gulf regions) lasted till the end of the Atlantic, but in other areas they changed in the second half of the period. Early in the SubBoreal, temperatures and precipitation start to decline slightly in the Northwestern Caucasus and in the Van region, although in the latter the climate kept to be highly humid due to reduced evaporation loss. In the same period, glaciers in the Greater Caucasus moved. The climate in the Persian Gulf region became more arid in the Sub-Boreal, while in the SubAtlantic it humidified slightly. Climatic conditions approached the todays pattem as early as in the Sub-Boreal, or later in this region. However, there were episodes of relative cooling and humidification in the 10* century BC (Sevan, Van and Sistan), 1sl-2nd centuries AD (Sevan, Sistan) and 16*-19* centuries AD (the Gagry Ridge and Sevan), which were almost coincident with the time of glacier motions in the Caucasus and partly in Taurus.

1.2.4. The Eastern Mediterranean Region. Climatic changes in the last glacial and post-glacial epochs were complex and varied from area to area. The epoch of Late Valday glaciation was characterized by considerable aridity almost everywhere. Relatively pluvial conditions set in since 18 ka BP in Israel only [Horowitz, 1979, 1987]. Detailed palynological studies and radiocarbon estimations of ages for this area indicate [Leroi-Gourhan, Darmon, 1987] that initially surges of humidification were, however, comparatively minor, but reached a more noticeable rate around 14,5-11 ka BP and particularly within 10,3-9,5 ka BP (Fig. 1). A similar pattern, although with specific deviations, can be inferred for other places as well, although the scales and start times of the humidification were different. Relatively low in the southern Anatolia (10-8 ka BP), the rate of humidification was higher in Lebanon and Western Syria (since 11 ka and particularly 10 ka BP) and in Central and Northern Anatolia (since 13 and particularly 10 ka BP). In Northern Africa, the humidification began 10 ka BP and reached its maximum 8 ka BP [Petit-Maire, 1992].

Later changes developed also differently. In Northern Africa, humidity peaks corresponded to 9-7 ka and 5,9-4,9 ka BP, and were followed with aridisation. In Israel, in contrast, most part of the Early and Middle Holocene was arid. There were a few surges of subsequent humidification related to certain cooling about 5 ka, 3,5-3 ka, and about 2 ka BP, again followed by aridization [, 1991; Issar, 1996]. Aridization in the Early Holocene was less pronounced in Lebanon and Western Syria, since climate conditions were milder there. As a result of extended period of the Early-to-Middle Holocene aridity in Southern Anatolia, present-day humid conditions had set in there only about 3 ka BP, while in an area northward, the' humidification reached its peak at about 7 ka BP with aridization signs showing up 5 ka BP.

1.3. Climate and development ofthe earliest agriculture in hhv Enthved Oykrmvdt

1.3.1. Gansert evmnekt. Synchronism between the spread of Late Paleolithic, Mesolithic and Neolithic cultures and favorable climate conditions, and, on the contrary, between culture degradation up to settlement interruption signs and unfavorable climate, has been established for various parts of Eastern Oykumena. The origination of agriculture and domestication of animals were critical steps in the human history, often defined as Neolithic Revolution. This important event is related to the very beginning of the Holocene and to the area of so-called Fertile Crescent that represents a north-convex arc bounding the Arabian plate and including Israel, Lebanon, the western Syria, the southeastern Turkey, the northern Iraq, and the western Iran (Fig. 2). A.J. Toynbee [, 1991: Russian version of Study of History, 1934-1961] developed the challenge-and-response concept, which suggests that the change to agriculture was a response of early hunters and collectors to the abrupt hrinizh- tion concurrently with melting of Late Pleistocene glaciers. Our opinion is that the situation was right the opposite: agriculture originated during relatively humid phases. We will try to prove this.

1.3.2. Prtvteinv, Lvbrnpn, rnd Syeir. In Israel and adjacent part of Jordan, the Mesolithic Kebarien was changed by Natoufien, a Late Mesolithic culture, in late 1 lth-early 10ttl millennia BC. Settlements of this culture were excavated in Jerico, Einan (Ain Mellaha) and Beida. The artifacts attest to intense collecting of wild eatable plants and, perhaps, to the first, but never developed attempts of their reproduction. The beginning of Natoufien corresponded to moderate humidification (Fig. 1), which was later followed by aridizatioe, a possible cause of stagnation in the Natoufien culture. A major step towards agriculture was made during the following epoch of the pre-ceramic Neolithic, along with significant humidification in the second half of the 9ttl and first half of the 8til millennia BC. Wheat and barley were cultivated side by side with collecting wild plants and hunting [, 1982] (Table 1). Jerico became a big settlement (Fig. 3 and 4). In Lebanon and the northwestern Syria, cultivation of cereals started in the 91|1-8millennia BC, again concurrently with humidification (Fig. 5).

1.3.3. In Sprueven Anrhptir, the climate of Early Holocene was relatively dry, but probably more humid than in the Late Pleistocene. Evidence of the onset of agriculture was found in Layer V in Hajilar (the 81millennium ) [, 1982]. Moderate humidity and water streams in the Konya Valley enabled agriculture without irrigation, and a large settlement of Chatd-HuyuR flourished there in the second half of the 8tl' - first half of the 7ttl millennia [, 1982] (Fig. 6). The economy of the settlement was based on versatile agricultural activities, cattle-breeding and hunting.

1.3.4. In the Innve Zrgept, humidification started in the 10thmillennium BC. The earliest signs of sheep domestication were found in the lower layer of the settlement of Zavi- Chemi (about 11 ka BC) in the north-west part of the region. Evidence of intense collecting of wild plants and, possibly, of agricultural activity was found in the higher layers of Zavi- Chemi and in the adjacent Shankar cave. More evident signs of agriculture and domestication of sheep and dog were found in the lower layers of the settlement of Jarmo dated back to early 7th millennium BC. In Gandj-Dere, a settlement located to the southeast, evidences of wheat and barley cultivation were dated back approximately to the boundary of the 9* and 8th millennia BC. Ceramics of the oldest age was found in a layer located a little up from this [, 1982]. In Huzistan, a period of non-irrigative agriculture and domestication of goat continued till the middle of the 6* millennium BC and was changed later by a period of irrigative agriculture and domestication of cow.

1.3.5. Plains and low hills of the NpeUhven Mvtppphrmir remained dry longer than the rest of considered areas. The region included some areas with temporary streams. An agricultural settlement of Jebel Magsalia (8th-7m millennia BC) situated in one of such areas was, probably, founded by migrants from a more humid region. Manifestations of irrigative agriculture are attributed to the Samarra culture epoch (6ttl millennium BC).

All these data indicate that humidification, often associated with certain warming, was one of the most important factors for generation of agriculture in the Fertile Crescent (Fig. 5). Agricultural technology originally developed at foot-hills and within intra-mountain basins, where no irrigation was required for agriculture. At a later stage, agricultural evolution lead to the discovery of irrigation; irrigative system spread into Mesopotamia, where agriculture had not been productive without irrigation.

1.3.6. Eariy agricullure in the Eastern Oykumena beyong the Feetiie

Among other directions, early agriculture spread out of the Fertile Crescent to Susianna and Southern Mesopotamia. Irrigative agriculture and cattle-breeding arrived to this area in the second half of the 6th millennium BC. The early agricultural economy reached its peak in the Obeid culture, which developed from the second half of the 5th millennium BC, laying foundation for later rise of the first Sumerian city-states.

Foci of the earliest agriculture reached areas to the east of Zagros (Syalk) and spread further to the east along the Alborz into the Southern Turkmenia, where warm and rather humid climate settled early in the Atlantic period (7ft millennium BC) along with superposition of the western cultural influence and domestic traditions was quite beneficial. The agricultural Jeton culture formed here in the 6m millennium BC across a foothill plain, bounded from the southwest by the Main Copet Dagh fault zone [, 1971]. The settlements were located near streams, which were then full-flowing all the year round. According to N.I. Vavilov [, 1965], wild ancestors of cultivated wheat belonged to the Iranian- Afghan group. Meat food was provided by hunting and cattle-breeding, and the share of the latter was increasing in time. The earliest signs of domestication of goats in the southeastern Caspian region were found in the Mesolithic layers of the 7th millennium BC. Mostly, or entirely, cattle-breeding was the basis for transition to productive economy in other regions of the Middle Asia [, 1971].

The first signs of agriculture and cattle breeding in the Trans-Caucasus were recorded in the Shulaveri-Shomutepeh culture, belonging to the ceramic Neolithic (the second half of the 7* - early 5th millennia ) [, 1993]. Absence of signs of any transitional Mesolithic, or Early Neolithic cultures may indicate that a period of rather cool and dry climate retarded the advent of productive economy, which formed not earlier than in the Atlantic optimum under the influence of the Fertile Crescent cultures.

The rise of agricultural and cattle-breeding cultures in the southeastern Europe is dated back to the 6th, or, perhaps, late 7th millennium BC. The earliest evidence found in Macedonia and Thessaly is attributed to the Pre-ceramic period, and attests to cultural influence, or even direct migration of the Anatolian population into the region [, 1982]. An important fact is that wild ancestors of small cattle and some species of cultivated cereals have not been found in Greece, and stem from Anatolia. Macedonian cultural achievements spread both to the south (Thessaly and Central Greece) and to the north, into Bulgaria and further up to the Carpathians. In a short term, transition to the productive economy spread over a large foreststeppe area of the Middle and Eastern Europe, characterized by the culture of linear-band ceramics. The spread of agricultural practice is proved by finds of seeds of soft wheat, spelt, and peas; bones of domestic cows, pigs, sheep, and goats have been found, too. Quick transition to the new economy system may indicate that aborigines had been ready to adopt it and that climatic conditions of the Atlantic Optimum also favored the transition.

Manifestations of the culture of linear-band ceramics have been found in the Northern Black Sea region up to the valleys of the Prut River and the Dnieper River in the east. The Bug-Dniester culture with signs of agriculture formed side by side to it in the 6th millennium [, 1969]. Likeness of the ceramics proves the Macedonian and finally Anatolian influence. Presence of wild bull and boar inhabiting the Northern Black Sea region conditioned the important role of cattle breeding [, 1971]. Pig in Crimea and cow in the Lower Dnieper area were domesticated as early as in the pre-ceramic period. Cattles share in the meat food was increasing throughout the period and become particularly large in the Ceramic Neolithic epoch (the 5* millennium BC). Cattle-breeding became the economic

base of the Sura-Dnieper culture. Tribes of the Dnieper-Donets culture, which inhabited the forest-steppe and forest zones of the Upper Dnieper area and Belarus mastered cattle-breeding as well.

Domestication of horse was an important step in the development of cattle-breeding in the Northern Black Sea region. Evidences indicating presence of domestic horses were found on the right bank of the Dnieper River, in the settlement of Dereivka dated to the second half of the 4tfl millennium [, 1967]. Horse breeding is associated with the Chalcolithic Srednestogovskaya culture of the second half of the 4* - early 3rd millennium BC. It had formed on the basis of the Sura-Dnieper and Dnieper-Donets cultures (the 5* - first half of the 4th millennia BC), when the first attempts of horse domestication could take place. Anyway, the cult of a horse-head sceptre as a sign of power began to spread across the steppe between the Middle Danube and Volga Rivers since the second half of the 4* millennium BC; it manifested the origination of a cavalry [, 1990].

Most of ancient settlements in the valley of Nile, whose population intensively practiced the collecting, are related to the 13th-12th millennia [, 1989]. However, they never turned to agriculture, which possibly could be explained by the lack of a necessary set of wild plant species and adequate climate conditions. During the last glaciation epoch, climate in Northern Africa was arid and rather cold. Humidification started in the 8th millennium BC; in the 7*-6m millennia occasional rains changed to more regular watering. In favorable areas, population turned to intensive collecting, which facilitated and increased stability of settlements [Barich, 1995]. It is probable that even since then residents of those settlements domesticated sheep and made their first attempts to keep agriculture. However, definitive transition to a productive economy system was again retarded, quite likely due to certain aridization in the 5th millennium BC, which changed to a new humidification period late in the 5th and in the 4* millennia BC. Fayum A settlement is related right to this period, at the boundary of the 5th and 4th millennia BC. The population was engaged in pig, goat, sheep, and, may be, cattle breeding, hunting, and collecting, and started to grow barley, wheat and flax, although 'that growing was still playing a secondary role. First stable settlements in Delta appeared about that time, or a little later, and were probably also based on cattle breeding. The earliest evidence of productive economy in the Nile valley was found in the Badara culture, dated to the early 4th millennium [, 1989]. It was rather an agricultural, than a cattle-breeding culture. That stage peaked at the Gherze culture (late 4th millennium BC) that spread all over Egypt. The progress in irrigative agriculture, trades, ideology and social relations the culture achieved, pre-netsrminsn creation of the Ancient Egyptian state.

Therefore, the productive economy of Egypt formed at a relatively late stage, and was probably a product of interaction and eventually mergence of cultures native of African regions located southerly that inhabited the Nile valley, on one hand, and semi-nomadic hunters, collectors, and early stock-breeders of the southern near-Mediterranean area, on the other hand. Plants and animals were, at least partly, adopted from Western Asia. Therefore, it is not improbable that immigrants from this area contributed to the formation of productive economy in Egypt.

1.3.7. Climatic affeuds m the taehs ^^ af dericnrtuue. tler^, wecD^ider juse a few typical examples (see detailed discussion of the problem in Section 7.3). After a gap in the Chalcolithic, which was coincident with an arid phase, an Earlier Bronze Age culture began to develop in Jerico since about 3200 BC, during the humid phase of 3,5-2,3 ka BC [Issar, 1996; Marchetti, Nigro, 1997a, b]. Later decay of this town, as well as of other Palestinian towns in 2,3-2,0 ka BC was concurrent to a phase of abrupt aridizatiee. A new epoch of activity is recorded in the Middle Bronze Age (2,0-1,55 ka BC) in parallel with humidification, the main phase of which is dated to 1,5-0,8 ka BC. Although it is possible to suggest that such humidification could provoke the Exodus of Jews from Egypt to Palestine, it was the time when Jerico lost its significance, which was not restored until the humid Hellenic-Roman period [Issar, 1996].

The Chalcolithic Cucuteni-Tripolie culture formed in the south of Ukraine, and in Moldova and Romania in the second half of the 5th millennium BC (the humid and warm Atlantic period). That was the peak of early agriculture and cattle breeding development in the region. Fast degradation of the Tripolie culture in the second half of the 3πi millennium BC coincided with cooling early in the Sub-Boreal period. The considered climatic change influenced development of an agricultural Kura-Arax culture that formed in the TransCaucasus in the middle of the 4* millennium BC (Section 6.1). Since the second half of the 3rd millennium BC, the Kura-Araks population had concentrated in large river valleys, occupied high foot-hills and intra-mountain valleys, and migrated to the southwest (Eastern Anatolia, Syria, and Palestine) and to the southeast (the northwestern Iran). In the same period, crisis-ridden Sumerian towns-states were conquered by the Western Semitic tribes led by Sargon the Akkadean (2371-2316 BC).

A humid period in the plain along the northeastern foot of Copet Dagh started in the 7th millennium BC and continued till early 2mj millennium BC; correspondingly, the earliest agricultural culture of Jeitun covered an area spreading up to the Pra-Tedjen valley during the Chalcolithic and the Bronze Age. Later aridization dried up the Tedjen valley and determined degradation and final elimination of these cultures in the second half of the 2mi millennium BC. The next bloom of agriculture in the Middle Asia in the antique epoch again corresponded to a humid phase. In the 6th century BC - 2mj century AD, the area of irrigated lands in the Aral water system reached 3,5-4 million ha [, 1962; , 1991]. Subsequent aridization since the end of the 1s* millennium BC reached its peak in the 3 πi-5 th centuries AD and caused economic degradation, which facilitated the Arabic conquest.

The next phase of humidification in the llth-15th centuries BC was accompanied by a slight decrease of temperature and determined a new prime of agriculture, growth of existing towns and foundation of new ones. The area of irrigated lands was restored to its antique period size [ ., 1998]. Such favorable climate facilitated even the fast recovery of destruction caused by the Mongolian conquest and Timurs wars. Stagnation, taking in the Middle Asia states from the second half of the 16th and, particularly, from the 17th century AD, corresponded to the aridization during the Lesser Scandinavian glaciation epoch.

Humidification in the northwestern India and in adjacent areas within 3-1,8 ka BC promoted the rise of Harappa civilization, while subsequent aridization in many regions of Central, Eastern and Southern Asia caused degradation of the civilization, and led to its total elimination 2 to 3 centuries later. Arriving to the northwestern India, Aryans found only local relicts of the civilization near the oceanic coast and in areas farther to the south of the subcontinent. The next humid phase in the northern India settled in the last centuries BC ( early centuries AD and favored development of the states of the classical period in the Indian history, namely, the kingdoms of Mauri, Sungas, Satavayana, Kushan, and Gupta; later aridization in the 5*-9* centuries was the time of considerable social and economic degradation.

1.4. Occss cheages

1.4.1. The baengraund oU net levea vmriatians rn nhe Holeceoe. aetween

the sea level rise in the late glacial and post-glacial time and intensity of thawed water influx into the ocean (Fig. 7) indicates that deglaciation was the main factor of the sea level rise. The total magnitude of the post-glacial rise is estimated at 120 50 m, with most estimates falling between 100 and 130 m [ ..., 1986; , 1996]. The greatest peak of ocean rise rates coincided with the time of the most intensive deglaciation in Fennoscandia and North America (the middle of the 10fll millennium BC), while the second peak was at about 7 ka BC (Fig. 7). Although at a decreasing rate, the rise continued till the middle of the 5* millennium BC and in a later period. The studies of the Japan Sea and Okhotsk Sea coasts indicate that during the Atlantic optimum the World ocean level could be 2-3 m higher than now [..., 1999]. This can be explained by quick destruction of

a part of the West Antarctic glaciers at 6-7 ka BP [Hughes, 1987]. The ocean level became more or less stable in the second half of the 4ft millennium BC (Fig. 8) and its later variations were minor; they partly coincided with the epochs of warming and could result from changes of volumes of the Antarctic and Greenland glaciers.

1.4.2. Generation oi tne Semerlra civrlization and ϳIegent rbout the Delvge ir upeestneiρn with Uhv pptertnuint eitv pS tvevt. The familiar biblical narration about the Deluge can be traced back to Akkadian sources, where its most comprehensive description is found in the Story about Atralchasis and in Gilgamesh Epics[, 1919; ..., 1981]. These in tum stem from a preserved version of a Sumerian prototype [ , 1997] dated back to the rule of Khamourapi (1792-1750 BC), but representing, most probably, a more ancient source. According to the Sumerian-Akkadian version, supreme divinities and, first of all, Ellile (Bel, Sumerian Enlille) decided to destroy the humankind with a flood, but Eah, the god of water and wisdom (equivalent of Sumerian Enki) warned Atrakhasis, a king, priest and a righteous man (Uotnapshitim, Sumerian Ziusoudra) and instructed him how to build an ark, where he saved his kin, and domestic and wild animals. The flood lasted for 7 days. The high waters covered the Mesopotamian lowlands up to mountain spurs in the northeastern edge, where the uncontrolled vessel was washed ashore Mount Nizir (Nitsir).

We interpret the layer of silt discovered by L. Wulley [, 1961] during the excavation in Uor (the Euphrates) as flood deposits. The layer covers Obeid culture horizons dated back to the second half of the 5rtl millennium BC, which contain moulded ceramics, without any signs of copper, and are overlain by the Uoruk culture layers of the 4dl millennium BC that contain ceramics prepared with a potters wheel. Tablets with ancient letters found in upper layers are dated approximately to 3000 BC. Therefore, the flood occurred early in the 4th millennium BC against the background of fast rising level of the World Ocean and, correspondingly, of the Persian Gulf. As follows from the Sumerian-Akkadian legends, that extreme rise during the Flood could be caused by a combination of thundershowers with a surge of gulf water generated by a south gale-force wind. Direction of the wind is attested to by the leeway of the ark that moved to the north of the town of Shourouppak toward Mount Nizir [, 1989].

The mentioned natural phenomena were important for the formation of both the Sumerian ethnos, and ancient Sumerian city-states. Not later than early in the 4ttl millennium BC Sumerians appeared in the Lower Mesopotamia. The analysis of archaeological and linguistic data and Sumerian legends indicates that their ethnos comprised two sources: one of them is Iranian (the Khadji Mohamed culture) [, 1982; , 1989]. Representatives of the other source could have migrated from the south, from the part of the Mesopotamian foredeep that appeared under the rising waters of the Persian Gulf and was later overlain with prograded delta deposits of the Tigris and Euphrates Rivers. Archaeological artifacts found on the gulf coasts are similar to the Eredou culture in the Lower Mesopotamia and can bear witness to this source. The Sumerian tradition of building temples on platforms can be traced back to this culture; most likely, it was originally intended to protect temples against floods, but later transformed into building ziggurats. Migration forced by the surge of water could serve the basis for the Lost Paradise legend, which precedes the Flood story in the Sumerian-Akkadian texts likewise in the Bible.

The efficiency of irrigative measures increased and the system of ancient Sumerian civilization city-states formed by late 4th century BC, after the sea level became relatively stable [D. Kennet, J. Kennet, 1996]. The largest cities of Uorok, Uor, Lagish, and N'girsu were located in estuaries and served seaports and international trade centers of the considered period. Later on, the intensity of sedimentation has exceeded the scale of eustatic variations and tectonic subsidence of the piedmont basin, so that today mins of these cities are 300 km far from the gulf.

Most of ancient peoples legends about the Flood were evoked by local disasters of actually later period. Among the others, the ancient Indian and ancient Greek legends take spe-

rial place [, 1989]. Indo-Aryans could adopt the ancient Indian legends from earlier dravid inhabitants of India, who kept sustainable relations with Mesopotamia at the time of the Harappan civilization. The second legend (the myth about Deucalion) most probably reflects the effects of the Great Minoan eruption on Santorini (see Section 4.4), including tsunami that covered the Attic part of Greece during a severe earthquake, which preceded the eruption, or heavy showers during the eruption itself.

Chapter 2

ACTIVE TECTONICS

2.1. Teetooic zoone aad ͳngnterthpic ^

Orographic variety of the central part of the Alpine-Himalayan belt is determined by heterogeneity of the alpine tectonics and nnotnctonic (Oligocene-Quatemary) manifesiaiions (Fig. 9) [, 1999]. They control characteristics and pattern of active faulting. Such heterogeneity of the alpine tectonics depends on the longitudinal and transverse zoning. The longitudinal zoning reflects certain distinct features of interaction between the southern Gondwanian plates (the Indian, the Arabian, and the African) and the Eurasian plate. The main of these features is that some fragments of the north-drifting southern plates broke off and started to move quicker than others, so the axis of spreading of the Tethys ocean jumped onto the rear of the fragments. In recent geological transverse sections (from the south to the north) these changes has manifested themselves in a sequence of neo-, meso-, and paleoTethys sutures, and corresponding adjoining zones of island arcs, or active continental margins. They all have been more or less renewed by neotectonic movements. As the drifting southern plates were rotating around a western pole, structural manifestations of the drift, including the nnotectonic features, were increasingly more pronounced in the eastern direction [ ., 2002].

The considered tectonic zones developed under compression and underwent essential transverse shortening that lasted during a part of, or, in some zones, throughout the neotectonic epoch. It started 40-50 million years ago, when the neo-Tethys had been closed and collision had taken in the most part of the Alpine-Himalayan belt. In the Pamir-Himalayan segment, the ﳳrepresents an asymmetric bilateral orogen, the north-northeastern flank of which is extended compared to the opposite one. Tectonic zones of the belt form a sequence of tectonic nappes, whose ages are successively younger both to the north and to the south of the neo-Tethys suture [, 1983]. Such sequential rejuvenation of deformation is less evident in the Arabian-Iranian segment, where the belt is narrower. Manifestations of the neotectonic compression include folds, thrusts and strike-slip faults not only in the sedimentary cover, but also in the basement. The progressive folding and thrusting in the basement have resulted in general uplift of the area.

The discussed region includes the Adria-Aegean (the eastern part), Arabian-Iranian, and Pamir-Himalayan segments of the Alpine-Himalayan belt [ ., 2002]. The segments are bordered from the west by weakly bent systems of NNE-trending left-lateral faults that continue into the southern plates and one way or another join the Middle Indian rift system. The boundary between the Adrian-Aegean and Arabian-Iranian segments is represented by the Levant sinistral fault zone that is continued by the East Anatolian sinistral zone to the northeast. The Levant zone joins with the Red Sea rift. The recent boundary between the Arabian-Iranian and Pamir-Himalayan segments is represented by a sinistral fault system, the main features of which are the Chaman fault and the Darvaz segment of the Darvaz-Alai zone. The Chaman fault continues to the south with a row of smaller en echelon faults [Wellman, 1966; Tapponnier, Molnar, 1979; Nakata et al., 1991] that are farther continued by the Owen fault to the Indian ocean. The considered transverse fault zones (particularly in the KE-trending parts) have a compression component of motion which reflects in reverse, or thrust offsets and parallel folds. In the meantime, the transverse zones are characterized by en

echelon structure with pull-apart basins forming between some of the segments. They are most typical for the Levant zone (the Aqaba, Dead Sea, Tiberian, and El-Gaab basins), and are identified in the Darvaz fault zone also (the Kokcha basin).

Generally, active structures within the segments strike from the northwest to the southeast with characteristic bends. The southern margin of the central part of each segment forms a gentle arc, bent to the southwest. The northern comer of each segment is rounded by Cenozoic tectonic zones arranged to form a syntaxis represented by an arc convex to the north. The main syntaxes are the Lesser Caucasus and Punjab-Pamir, having common structural features. Their western flanks are formed by sinistral fault zones along the segment boundaries. Dextral active faults strike along the northeastern sides of the syntaxes. The dex- tral faults stretch farther to the southeast, where they are replaced by active thrust-and-fold zones bending to the southwest. The main syntaxes are areas, where the general north-northeastern drift of the southern plates locally transforms into the northern drift. Smaller syntaxes are identified in the eastern parts of each segment, including the Rhodos syntaxis between the arete-Hsllse and the Cyprus arcs, the Oman syntaxis between Zagros and Makran (the Aladagh-Benalud arc to the north of the Lut block is formed by its drift) and the Assam syntaxis to the east of the Himalayas.

On the northeastern flanks of the southern plates, tectonics depends on the features of the Earths crust. Recent subduction combined with counter thrusting of the northern side takes place in the Crsts-Hellen and Cyprus arcs, where the southern plate has the suboceanic crust [, 1999]. In the Himalayas and Zagros, the continental Indian and Arabian plates plunge under the crustal structures of the belt gently because of relatively small average density of rocks. Although the sedimentary cover of the foredeep has little, or no contribution to the underthrusting, it is detached and deformed independently of the basement, forming active thrusts and folds clearly pronounced in the topography. In Zagros, this process is promoted by the presence of a Late Precambrian evaporate formation in the lowermost section of the cover. The age of thrusting and folding in Zagros has been determined by paleomag- netic dating of coarse molassa [ ., 2000]. These data indicate that both the folding, and the subsequent local thrusting and detachment covered a foredeep area in front of the Main Zagros underthrust. After that area was folded entirely, local detachments joined into a single detachment zone and the area was uplifted. The folding and associated processes propagated into an adjacent area further to the southwest from the Main underthrust. Eventually it led to the formation of several zones with progressively younger ages of folding, detachment and uplift from the Late Miocene up to the recent time. These zones of different age have different features of active tectonics. Active reverse and strike-slip faults are discordant relative to the folded structure in the older zone (the High Zagros). Active tectonics of the intermediate zone (the Lesser Zagros) indicates recent continuation of folding, thrusting and development of a marginal flexure, marking detachment propagation boundary. In the Coastal zone, the most distant from the Main underthrust, we observe only local active folds, which represent the initial stage of the process. Similar process is manifested in the Himalayan Foredeep by rejuvenation of course molassa to the south from the underthrust [Yeats, 1986].

Deformation and displacements on the southern flanks of the Alpine-Himalayan belt by no means compensate the drift of the southern plates. By a mechanism of bulldozing, then- motion is, to a considerable extent, transmitted to the northern parts of the belt [, 1999], mainly transforming into active offsets and deformation in boundaries of microplates and crustal blocks and partly realizing as intrablock deformation. As intensity of the deformation decreases from the south to the north and northeast, the style of active tectonics changes accordingly from combination of faults and folds to faults solely. According to the general increase of deformation from the west to the east of the belt, the bulldozing occupies large areas in the Central and Eastern Asia, being limited only by Iran in the Arabian-Iranian segment, and covers narrower zones to the west of it. The bulldozing is combined with squeezing of rocks out of the syntaxes, which represent areas of maximum compression. This

determines the predominance of strike-slip motion over thrusting and reverse displacements on active faults in the bulldozing areas. Considering the rheological conditions of the continental crust, we explain such predominance of strike-slip motions on active faults in the Alpine-Himalayan belt by the fact that this sense of motion consumes less energy than movements on thrusts, reverse and even normal faults [Trifonov, 2000].

2.2. Active faults in the Pamir-Himalayan region

and Central Asia

The region includes the Pamir-Himalayan segment and adjoining structures in Afghanistan and Pakistan that belong to the Arabian-Iranian segment (Fig. 10). Active faults in the structural bounds of the Panjab-Pamir syntaxis play an important role here. Actually, the western boundary of the syntaxis is the boundary between the Arabian-Iranian and Pamir- Himalayan segments, represented by a sinistral fault system, the main features of which are the Chaman fault and the Darvaz segment of the Darvaz-Alai zone. An average slip rate in the Late Quaternary reaches 10 to 15 mm/year [, 1983] (Fig. 11). In the E NE- trending Alai segment of the Darvaz-Alai zone, sinistral slip transforms into thrusting. Along the two fault branches, the slip rate reaches 10 to 12 mm/year [Nikonov et al., 1983, 1984]. On the northeastern boundary of the syntaxis, an average rate of the Late Quaternary dextral motion (Vlq) on the Pamir-Karakorum fault reaches 27-35 mm/year [Liu et al., 1991]. It transforms partly into transverse shortening on the Boundary and Frontal thrust zones in the Himalayas (Vlq = 15-25 mm/year [Valdiya, 1986]) and partly into dextral slip on the easttrending en echelon fault system (Vlq = 10-20 mm/year [Armijo et al., 1986; Armijo, Tapponnier, 1989; Molnar, Deng Qidong, 1984]) that strikes along the southern Tibet up to the Red River dextral fault in the East. There are NNE-trending grabens (the Yadong-Gulu is the largest) between the en echelon system and the Himalayan active thrusts.

Active zones with combined trust and dextral components of motion are identified to the west of the syntaxis. They are the Surkhob-Iliak zone [, 1983] and Chormak- Andarab and Herat zones [Wellman, 1966; Tapponnier et al., 1981; ., 2002]. In the Tien Shan and Dzhungarian Alatau, north of the syntaxis, WSW-trending active thrusts [, 1995; , , 1987] combine with the NW-trending dextral faults, including the Talas-Fergana fault (Vlq increases from 5 mm/year in the SE up to 15 mm/year in the NW; Fig. 12 [Trifonov et al., 1992]) and the Dzhungarian Fault (Vw = 5 mm/year [ ., 2002]).

To the east and NE of the syntaxis, major rast-irending sinistral strike-slip zones have been identified in the western China [Ding Guoyu, 1984; Atlas..., 1989], Mongolia [, 1985; , , 1988] and in the southwestern part of the Baikal rift system [, 1988]. They are the Amimaqing (Kunlun) (Vlq =1-10 mm/year), Altyn-Tagh (Vlq = 7-9 mm/year), Gobi-Altai (V1q =6-9 mm/year; Fig. 14), Khangay (Vlq =8-10 mm/year), Baikal-Mondinsky (Vq = 1,5-2 mm/year), and Tunka (Vlq is up to 4,5 mm/year) zones. Eastwards, the system of sinistral faults on the northern flank of Tibet bends first to the SE (the Xianshuihe zone and Changma-Kilian zone of Vlq = 5-20 mm/yr and vlq = 46 mm/yr, respectively) and then to the south (the Aiming, Zemuhe and Xiaojiang Faults of total Vlq up to 10 mm/yr) [Ding Guoyu, 1984; Molnar, Deng Qidong, 1984; Atlas..., 1989; Allen et al., 1991]. In the western Mongolia, the Gobi-Altai and Khangay sinistral zones join with a NNW-ttending dex^al system, including the Ertai (Vlq = 4-12 mm/yr) [Ding Guoyu, 1984; Molmar, Deng Qidong, 1984; Shi Jianbang et al., 1984], Kobdo (Vlq = 4-5 mm/yr; Fig. 13), and Bidje (Vlq = 2-2,5 mm/yr) faults [, , 1988].

2.3. Active faults in ihe Arabian-Caucasus region

The Levant and East Anatolian fault zones form the western boundary of the Arabian- Lesser Caucasus syntaxis (Fig. 15,19-21). An average rate of the Late Quaternary slip reaches 7,5 mm/yr in the southern (Israel) segment of the Levant zone [Zak, Freund, 1965], but

decreases to 5-6 mm/yr in the northern (Syrian) segment [ ., 1991], where the motion is partly accommodated on the Roum fault along the continental slope [, 1999]. The same rates are typical for the East Anatolian zone [Saroglu et al., 1992a], which joins the Pambak-Sevan-Khonarassar Fault Zone in the Lesser Caucasus, forming the North Armenian arc of active faults. Inside the North Armenia arc, there is the second and steeper arc defined by the Akhurian. fault in the west and the Garni fault zone in the east (Fig. 23). To the north of the North Armenian arc, on both slopes of the Great Caucasus (mostly on its southwestern slope) longitudinal active thrusts combine with dextral faults trending to the NNW (Fig. 25). In the northwestern Caucasus, this system is complicated by transverse normal faults.

Two systems of active faults form the northeastern side of the syntaxis. The Pambak- Sevan-Khanarassar fault zone in Armenia represents one of these systems (Fig. 22), where dextral component of the motion exceeds the reverse one repeatedly and reaches 45 mm/yr [Trifonov, Karakhanian, Kozhurin, 1994]. The southeastern termination of the Khanarassar fault is continued by the North Tabriz fault (Fig. 24) [Berberian, 1976; Trifonov, Karakhanian et al., 1996]. As a result of bending of its strike to the ESE, the reverse component increases. Fragments of the system under discussion are identified southeastwards, behind the Zagros, where similar regularity is established: reverse, or thrust component of motion increases along with fault bending to the east relative to the general southeastern trend.

The second system follows the Arabian plate boundary. In the northern part, it is represented by the southeastern segment of the North Anatolian dextral fault zone with an average rate of motion of about 9 mm/yr [Saroglu, 1988]. The Main Recent fault of Zagros branches out of it to the SE [Tchalenko, Braud, 1974]. Predominantly, it is also a right-lateral fault with

= 5 -10 mm/yr [Trifonov, Hessami, Jamali, 1996]. The main southeastern continuation of this fault is represented by the arched Dena fault, striking to the south and characterized mostly by dextral displacements; southward it bends to the SE, where thrusting and associated folding predominate on its branches. From the Dena fault, the Kazsrun-Borazjan (Fig. 17) and Ka-eh Bas (Fig. 18) dextral zones branch off to the south [ ., 2000]. The Kazerun-Borazjan zone (with Vq = 5 mm/yr of an average rate of the Quaternary motion) continues in the southern direction in proportion with thrust and folded active zones branching out of it to the SE. The Kareh Bas zone strikes to the south with predominance of dextral component of motion. Southerly, the zone forms several step-like bends to the SE, and these southeastern segments are characterized by thrusting. Finally, it turns to the SE forming a flexure-thrust zone with uplifted northeastern side. The described faults demonstrate dependence of sense of motion on the fault strike. In the meantime, ,the system of right-lateral faults is not straight as a whole: it trends to the ESE in the northern part (the North Anatolian zone), then turns to the SE (the Main Recent fault) and finally to the south (the Dena, Kazerun- Borazjan and Kareh Bas faults).

The boundary strike-slip zones converge on the northern flanks of the syntaxes. Along with an expectable increase of compression component, behavior of the strike-slip component of motion in this area is particularly noteworthy. The north-trending Levant zone continues by the NE-trending East Anatolian zone. The latter bends to the east and joins with the Pambhk-Sevan-Khanhrassar fault zone (that bends to the west) at an angle of only 17, and both zones keep strike-slip sense of motion up to the junction [Trifonov, Karakhanian, Kozhurin, 1994]. A similar sharp angle between sinistral and dextral faults has been described by A.S. Karakhanian in the Doruneh fault zone to the north of the Lut block in Iran.

From its intersection with the East Anatolian zone, the North Anatolian dextral fault zone continues to the NW and to the west up to the Sea of Marmara, and borders the Anatolian plate from the north [Saroglu et al., 1992b]. An average rate of the Quaternary dextral motion on the North Anatolian zone reaches 13-15 mm/yr in the central part, and 15-20 mm/yr in its eastern and western terminations [Trifonov, Karhkhaeian, Kozhurin, 1994]. According to the GPS data, 20%-30% of the additional dextral deformation is distributed across a 100-km-

wide band around the fault zone and the total rate of the counter-clockwise rotation of the Anatolian plate is up to 24 mm/yr [McClusky et al., 2000].

East-trending faults with sinistral component of motion play a significant role in active tectonics of the northern Iran (Fig. 26-28). These faults include the Dast-e Bayaz, Doruneh, Mosha (Vlq = 2-3 mm/yeao), and Ipak (Vlq = 1-1,5 mm/year) faults and the rupture zone of the Rutbar 1990 earthquake in Albnoz. The associated major north-trending dextoal faults (the Jabbar, Nalband, Ravao, and Kuh Banan) predominate in southern areas of Iran [Wellman, 1966; Tchalenko, Ameraseys, 1970; Tchalenko, Bnrbnriαn, 1975; Mohajnt-AshjaI et al., 1975; Berenrian, 1976, 1977; Berberian et al., 1992; Trifonov, Karakhanian et al., 1996].

In Copet Dagh, the dominant active structure is the NW-trending Main Copet Dagh fault zone (Fig. 29). To the west, the zone is continued en echelon by the Isak-Cheleken and Apsheron-Threshald zones. Dextoal component of motion on the Main Copet Dagh fault zone is several times as great as the reverse one, and reaches 2 mm/yr. Weaker manifestations of active faulting have been identified in the South Aral area of the Turanian plate, where four fault zones join. One of these faults is the NW-trending Central Ustiurt fault [Nikonov, Sholokhov, 1996] that is continued en echelon to the SE by the Northern Border fault of the Bukhara step [, 1884]. The Amu Darya fault can be traced to the NNW up to their junction [ ., 1988] and continues northerly by en echelon arrangement of faults near the Amu Darya mouth and in the Aral sea. Small vertical offsets are characteristic of all these faults. Dextoal and sinistral components have been recorded on the Central Ustiurt fault and the Amu Darya fault, respectively.

2.4. Active fauUt in the

The western tnrmination of thr North Anatolian fault zone forms several branches, the northern of which is continued nn echelon by thn North Aegean fault. The pull-apart basin of the Marmata Sea is situated at the junction of these faults. Seismological data allow estimating thn dextral slip rate on the North Aegean fault as 6 tn 24 mm/yr [Papazachns, Kiratzi, 1996]. Southwards from it, both of the coastal areas of the Aegean Sea arr ruptured by numerous active normal faults (Fig. 30). Striking mostly to the WSW in Turkey, and to WNW in Gtnrcn, these faults represent fragments of several arcs convex to the south [Seismotectonit map..., 1989; Saroglu et al., 1992b]. The largest normal faults in Greece form thr Teermπpylae-Atalanti zone, for which Stiros and Rondnyanni [1985] suggest an avnrage rate nf vertical movements nf Vlq - 0,8-1,4 mm/yr and the Corinthian Gulf zone, where, by seismological data, extension rate comprises 0,8 mm/yr (Tselentis, Makropoulns, 1986).

According to the GPS data, rates of the south-southwestern drift of thn Aegean Sra islands comprise about 30 mm/yr, which is by 5 to 7 mm/yr greater than the rate for which the counter-clockwise rotation nf the Anatolian plate could be responsible [McClusky nt al., 2000]. This additional extension of the Aegean basin manifests itself in normal faulting. We explain this by an influence nf a mantle diapir [, 1999]. The drift producrs thrusting on thr Crete-Hellen arc, combined with the subduction of the African plate at rates nf 5-7 mm/yr. Therefore, thr rate of total transverse shortrning of the arc exceeds 35 mm/yr. Seismological data indicate that the rate of shortening is 30 mm/yr in some parts of the arc [Papazachos, Kiratzi, 1996]. Its northern side is uplifted at a rate of about 3 mm/yr [Papadopoulos, 1989; Jackson, McKenzie, 1988].

2.5. ^ faπlte ea environmennta ffacon

2.5.1. active cavils an human eeαirnnmenn. Publications HOnKa-sing se⅛r mic hazard active fault zones may cause ate numerous. Ground shaking, tsunamis and liquefaction are the most commonly cited effects of active faulting and related strong seismicity; each of these phenomena can destrny housing and kill people. In the meantime, many other active faulting effects also deserve detailed examination. Among most important factors to consider is specific land suoface topography determined ∙ by active fault movements (Fig. 31,

32). In tectonically active regions, such as the Alpine-Himalayan belt, wide-spread active faults have created numerous relatively steep slopes, linear depressions, closed or semi-closed basins, etc. Since ancient time, local population has used these and other landscape features as areas convenient for agriculture, or as routes for migration facilitating communication between different groups of people, or as natural barriers impeding free passage from one area to another.

Faults and fault zones, and active ones in particular, can serve channels for vertical migration of different chemical elements. It is suggested that such migration can be accompanied by various geochemical anomalies, or in some way change otherwise regular distribution of the elements in grounds, soils, surface or ground waters [Trifonov, 1997]. Some of the evidences in support of this suggestion were obtained in 1988, during the Tien Shan-lntercosmos-88 experiment [, , 1989]. Variable magnetic and electrical conductivity anomalies were detected in active fault zones of the region. A.V. Abdullaev measured abnormally high contents of mercury and radon above the Chon- Kurchak active thrust in the northern Tien Shan, and the Talas-Fergana dextral active fault in the central Tien-Shan (Fig. 33). The most convincing results were obtained for the Surkhob- Ilyak boundary fault zone between the Tien Shan and Pamirs: lucerne in fields crossed by the fault zone contains about three times higher concentrations of Mn, As, Zr, Nb and other heavy metals than lucerne studied further from the zone does (Table 2) [ ., 1991].

A profile across the Spitak 1988 earthquake fault in the northern Armenia studied several years after the earthquake has provided more versatile data. At the same profile locations, concentrations of several elements were measured in rocks, soil and plants (Fig. 3436). The recorded concentration variations partly reflect different composition of bedrock on the fault sides: the northern uplifted fault side contains the Meso-Tethys ophiolites, while the southern fault side is composed mostly of the Upper Cretaceous carbonates. The contents of Mg and Fe are higher on the northern side, while the content of Ca is relatively larger on the southern side. These differences are, however, less distinct (and even indistinguishable for Ca) in soils and plants. Concentrations of some elements demonstrate a tendency to increase toward the fault zone and then to drop suddenly within tens of meters from its plane (Na, Mn, Co, Se, Ga and a more gentle curve for Fe and Ti). The shortage of Co decreases from rocks to soils, and that of Na and Si increases in plants. In the meantime, contents of Mg and Ca measured closer to the fault are lower in rocks and soils within the fault zone, but increase in plants. Measurements of V contents provide a reverse pattem. Therefore, fracturing and water circulation along the fault zone may be suggested as main factors controlling variations of chemical elements in the studied area.

Some negative ions may penetrate into fault zones together with deep-source fluids. Higher concentrations of Cl and ^4S0,4 were recorded in bottom sediments of Lake Sevan (Armenia) along the trace of the Khanarassar active fault zone (Fig. 37). Intensive CH4 emission was established in lake areas above this and some other active faults. Certain correlation between weak seismicity and amount of plankton in the lake waters shows significance of the fault activity for biota (Fig. 39-41) [Karakhaeian et al., 2001]. Perhaps, the anomalies described above will help to explain how active faulting can influence biota and human health (Fig. 38, 42).

N.N. Vorontsov and E.A. Lyapunova [1984] pointed out that potential influence of active faults on living organisms can be traced even on a chromosomal level. They studied chromosomal characteristics of fossorial rodents of the Ellobius talpinus supsrspeciss. The range of this super-species covers an area from the southern Ukraine up to the northern China and from the Kara-Kum desert up to the western Siberia. The two allopatric karyomorphs representing the super-species are E. talpinus s. str. (2n = NF = 54) in the west and E. tancrei (2n = 54; NF = 56) in the east. Near the Surkhob-Ilyak active fault zone in the Pamirs-Tien Shan boundary, the E. talpinus super-species shows an uniquely wide chromosomal variability with the constant NF = 56: 24 karyomorphs with 2n = 31-54 were identified there (Fig. 43). N.N. Vorontsov suggested this could be a step toward formation of a new species.

Such chromosomal variability could result from a saltatinnal genetic mutatinn and the subsequent period nf divergence and fast fixation of the changes.

Similar Robertsonian variation was established for mole-rats Microspalax leucodon in active fault zones of Bulgaria, Yugoslavia and Turkey, and fnt M. ehrenbergi in the Levant fault zone. The housr mouse Mus musculus (stable karyotype is 2v = NF = 40) demnnstoated chromosomal variations neat active zones in Italy [Capanna, 1980]; the same phenomenon was established for sub-alpine vnles Pitymys daghestanicus in the Transaaucasus, particularly neat the Khαvarassar aatier fault zone [ ., 1988]. A mutant form of Y^hoo- mnsome and some other chromosome anomalies were found among voles inhabiting active fault zones in the southern Italy, Yugoslavia, the Tien Shan, the Altai, the south of the Baikal lift, Kunashit and Shikotan islands of the Kuriles, Hokkaido, Honsu, and the northern Andes. High ceoomnsnmal variability was recorded for pocket gnphers near active fault zones in thr states nf California, Oregon and Washington [Vorontsov, Lyapunova, 1984]. A.S. Karakeaniav found that concentration of endemic plant species neat active zones in Armenia may be interpreted as a mutation effect (Fig. 44).

2.5.2. Importance ectiea faoeteag ton tfe generatier off narly agricaltuce iu thin Eastern Oykumena. Influences nf active faulting on human life and social development aoe primarily related to its being the source of strong earthquakes and such accompanying phenomena as ground defnomatinn, landslides, and, sometimes, volcanism. However, active faulting has been a natural source fno not only disasters. Fig. 2 shows active faults nf the Eastern Mediterranean and the Middle East and the archaeological sites with evidence of rarly agriculture dated back to the second part of the 9*and 8m millennia [, 1982]. These sites are all (except of Chatal Huyuk in Turkey) lncated near active fault zones, or in basins bounded by active anticlines with blind thrusts in corrs. Good soils in suitable fields, sources of water and seed material for planting, as prerequisites of agriculture, could be associated with active tectonism. Active faults formed steep-slope bounds surrounding ivirrmountain basins and foredeeps with springs and fertile soils on alluvium. The ridges uplifting all around delayed the western cyclones and facilitated raining in the basins. All of the considered early agriculture sites were located in thr reginns, where wild ancestors of cultivated plants spread widely [, 1965]. Within such regions, N.I. Vavilov distinguished several arras, where a large number nf different species and fnoms of eatable plants grew conauorenily. These arnas fell within nr clnsr to the active fault zones that may have been sources nf mutation effects. It helped early farmets to find most productive plants.

Therefore, active faulting is accompanied by a eπtiriy geophysical and hydro-geoahem- ical anomalies that can contributr to suppression of thr biota, including cultivated plants, to apprarance of specific human diseasrs, or wider distribution of other illnessrs, depending nn the geπdyvamia, geophysical and geochemical features of the fault zones. On the nther hand, the neotecionIa development of fault zones created specific landscapes rich in underground water sources and suitable fno settlements and agoiculture, especially in arid regions of Asia. Despite threatening the biota and local populations, mutation effects accumulating in active fault zones promoted geneoation of early agriculture. All these features and effects of active faults should be taken into account when planning covtiouation, land use, preventive health caoe measures, and population activities in paoticular arras.

Chapter 3

STRONG EARTHQUAKES

3.1. Cathtopge co estoon cnsOhhueaes in the Eastern Oykumena

The Catalogue of strong earthquakes in the region between 23-50N and 15-80E (Appendix 2) was compiled to study the seismic history nf the Eastern Oykumena in the second part of Holocene. The Catalogue includes Ms> 5,7 events from 3200 Bc till the end of the

20th century. For this compilation, we used published regional catalogues and earthquake descriptions provided in relevant publications. Moreover, we examined data on historical seismicity contained in some of Latin, Byzantine, Arabic, and Iranian sources and re-analyzed the Armenian chronicles in detail. To determine intensity and magnitude for historical earthquakes in Armenia, we compared descriptions of their damage with the pattern of destruction caused by the Spitak 1988 earthquake (Fig. 45-47). As a result, we identified previously unreported historical events and defined parameters for some other events with greater precision [Trifonov, Karakhanian, Assaturian, Ivanova, 1994; , 1999]. The Catalogue (Appendix 2) includes 2,911 earthquakes. Their parameters are grouped under 13 columns.

Column 1 - earthquake ID number.

Column 2 - sources of information. Numbered references for each earthquake are included in full in the list of references enclosed to the Catalogue.

Column 3 - earthquake year; - (minus) before the year means BC. A season of the earthquake is given, if it is known without more accurate definition (for example, in ID 379).

Column 4 - Earthquake month.

Column 5 - Day of a month.

Column 6 - Exact time (hours and minutes are separated with ; ).

Column 7 - Latitude North (degrees and degree decimals).

Column 8 - Longitude East (degrees and degree decimals).

Column 9 - Magnitude value.

Column 10 - Magnitude type (usually Ms). Sign C shows the magnitude is calculated using macroseismic data.

Column 11 - Calculated earthquake energy in J.

Column 12 - Earthquake intensity by the MSK scale.

Column 13 - Hypocentral depth in km.

The selected base magnitude is Ms derived from surface waves and the one approaching in its size and sense to.Mw magnitude referred to in Russian catalogues. In case macroseismic data were used to estimate magnitudes we used the relationship suggested by N.V. Shebalin, that links earthquake intensity (/), magnitude (M) and focal depth ():

A part of the sources use Mb magnitude derived from body waves. To re-calculate Mb into Ms we used the formula of B. Bolt [, 1981]:

F.T. Aptekayevs formula was used for earthquake energy estimations:

3.2. Spatial tad temporal variations of siansg seismicity manifestations

3.2.1. Tasks and methods of the study. Majority of strong earthquake foci in the region have been recorded within 20-30 km of the Upper crust. N.V. Shebalin [ ., 1991] distinguishes diffused and concentrated seismicity. The concentrated seismicity is located in active fault zones [Ambraseys, 1970, 1988, 1989; Berberian, 1976, 1977; , 1986; , 1985; Ulomov et al., 1999; Ulomov, 2000; Shebalin et al., 2000; Trifonov, 2000] (Fig. 52). We studied variations of strong earthquake manifestations in time, including longterm variations for 5000 years (by grouping the earthquakes in 50-years intervals) and shortterm variations for the 20ttl century (by grouping the earthquakes in 5-years intervals).

The first strong earthquakes documented in written can be dated to the fist half of the 8th century BC. These early reports are represented by a well-known passage in the Book of Prophet Zacharia [Zach. 14 : 4-5], according to which the earthquake in Israel is dated to

about 760 , and its magnitude is estimated as Ms ~7,3 [Nur, 1991], and the Khorkhor cuneiform inscription of the Urartian king Arghishti the 1st (787-766 BC), that allows us to date an earthquake in the southern Lake Sevan area (Armenia) to 782 BC presumably, and estimate its magnitude by hrchasossismicity data at Ms ~ 7,2 (Sections 6.1.2 and 6.3.2). These written evidences are unique, considering that strong earthquake reports became more frequent only since the classic Greece epoch. Seismic events of the preceding period have been revealed by archaeo- and palsossismological studies that provide known uncertain results, giving a selective characteristic of the studied region. Historical earthquake parameters have been estimated with a relative degree of certainty only if a sufficient amount of macro-seismic data is available.

As historical conditions can influence the accuracy of earthquake-related information records and their preservation, these shall be taken into account when assessing representativeness of the catalogue for individual parts of the region and for individual time intervals. To be certain in the important role of this factor we have correlated periods of growth and decline in the Byzantine Empire history [ , 1967] with the numbers of strong earthquakes that were recorded in the same periods across the areas then under the cultural influence of the Empire. The areas include the Aegean, Greece, Anatolia, and Eastern Mediterranean. Although the results such correlation provided indicate no simple relation between historical conditions in the Empire and respective numbers of earthquakes recorded, there are grounds to suggest coincidence of stronger seismicity with political and economic decline periods, and potential contribution of earthquake effects to such decline, rather than assume a more consistent record of earthquakes during social stability stages (Fig. 48). The factor of earthquake record incompleteness can, apparently, affect analysis of seismicity variations in time if small areas are considered, but it becomes less sensible if we integrate the areas as shown in Fig. 48. Keeping this in mind, we limited our study of space-time distribution of strong earthquakes to a few selected large areas and zones that are, in the meantime, characterized by distinct seismotectoeic conditions (Fig. 49):

1. The Carpathian-Balkans area;

2. The Eastern Mediterranean and adjacent part of Africa;

3. The Aegean, including Greece and adjacent part of Anatolia;

4. The North Anatolian zone;

5. The Levant and East Anatolian zone;

6. The Lesser Caucasus and Lower Koura basin;

7. The Great Caucasus;

8. The Zagros;

9. The Alborz and Ala Dagh;

10. The eastern Iran and Makran;

11. The Copet Dagh and Binalud;

12. The western surroundings of the Indian plate (Balujistan and the Indus basin);

13. The northern flank of the Indian plate (the Himalayas, Karakorum, Eastern Hindu Kush, Pamirs, Kunlun and adjacent parts of Tibet and Tarim);

14. The western Tien Shan, Afgan-Tadjik basin and adjacent part of the Turanian plate;

15. The southern Tien Shan and adjacent part of Tarim;

16. The central and northern Tien Shan.

The zones are joined into four provinces representing different segments of the Alpine- Himalayan belt. They are:

I. The area of interaction of the African and Anatolian plates, and the European part of the Eurasian plate (Zones 1-3 and the western part of Zone 4);

II. The western flank and the northern front of the area of interaction between the Arabian and Eurasian plates (Zones 5-7 and the eastern part of Zone 4);

. The northeastern part of the area of interaction between the Arabian and Eurasian plates (Zones 8-11);

IV. The western flank and the northern front of the area of interaction between the Indian and Eurasian plates (Zones 12-16).

Comparing the provinces and zones, and analyzing the seismicity time-series, we assumed that systematic earthquake oecnod starts from the first 50 years' mtni-val fno which at least twn seismic events are reported and more oo less unintetrnpted record nf events is kept subsequently. In the Aegean, the onset of systematic record of ealthquakes is dated to the second half of the 6th century BC, i.e., an eatly stage of the classic Ancient Greece. Lateo in the ancient epoch (second half of the 4*century BC), systematic record of earthquakes was started in the Noote-Avatolian zone and Eastern Mediterranean. In the region of Caucasus, systematic earthquake accounts first appear rarly in the Middle Age: in the middle of the 5* century and early in the 8* century for the Greateo and the Lesser Caucasus, respectively. In Ioan and Middle Asia oases, this record started during the period nf the Baghdad Caliphate with its magnificent cultural traditions and high level of development in natural and exact sciences. In the Christian Catpathian-Balkan area the same process began since the 12* century. In the areas influenced by the Indian culture, systematic earthquake reports started not before the British authorities had created relevant survey in the middle of the 19* crntuty; probably, the explanation is local mentality. In the same period, administrative authorities of the Russian Empire initiated a systematic record of earthquakes in the mountains of Tien Shan, Pamirs, and Tarim Basin.

3.2.2. Spatial distribution ol strong seismicity. Fig. 50 shows distribution of total energy released in all strong (Ms> 5,7) earthquakes recorded in the region. Of the total energy released, almost 47% fell to Proeivae I, little more than 23% to Province , about 13% to Province , and almost 18% to Province IV. Such distribution is, to a considerable extent, determined by the duration of systematic earthquake records. For Province IV, this factoo is of particular importance, since in larger part of its area systematic records were started not bnfore the middle of the 19*century. This tendency can be clearly demonstrated if distribution of the total energy released by strong earthquakes in the region is compared to the distribution nf energy released in the 20* centuoy (Fig. 51), for which shares per Provivars are different: the amount of energy released in Province IV increases up to 41,5%, in Provinces I and II it drops to 38,5% and 7%, respectively. The improvement is mostly due to the record nf mantle earthquakes with hypocentrel depth > 70 km. A greater part of such earthquakes are confined to the Pamios-Hindoukoush seismic source area located in the NE of Zone 13 and in a neighboring part of Zone 14. Earthquakes with focal depths nf >70 km are responsible for almost half of the total energy strong earthquakes in Province IV released in the 20* century, and fnr only 28% of this total in Province I; earthquakes of this depth range are rare in Provinces II and III. This may lead us tn assume that with the same rate nf record completeness for the pre-rnstiu- mental earthquakes, Province IV seismicity would not appear weaker than Province I. Such assumption is supported by tensnr field calculations fnr the oates of recent deformation derived from active fault data [ 2002; Trifonov et al.,1999].

3.2.3. Long-term variations of strong seismicity. Early phases nf seismic activation can be constrained only hypothetically, flom the results of palen- and πrchaeo-seismπlogical studies. Signs of strong earthquakes revealed in Provinces I- (Zones 3, 5, 6 and 9) can be dated back to the middle nf the 3κl millennium BC. Another identified earthquake occurred lateo, just before the Great Minoan eruption of Santorini (Section 4.4). The next supposed surge of seismicity in Provinces I and is related to the second half of the 2* millennium BC. Aochaeoseismological data attest [Stitos, 1996] that strong earthquakes destroyed or severely damaged most of Achaean cities nf Greece by the second half of the 13* century BC, which facilitated the success of invading Dorian and Thoaciav-Illyriav tribes and led tπ the fall of the Mycenaean culture (see Section 7.3).

The rhythm of seismic events in individual seismπtectπnic zones of the Eastern Mediterranean can br traced only from the middle of the 1s* millennium BC. In Province I, such rhythm is determined by the distribution of earthquakes in time across Area 3 and Zone 4 (Fig. 53-58). Seismic activation phases coincided with the first half of the 4* centu- 18. .., A.C. 545

ry , second half of the 3πi century BC (?), second half of the 1st century AD, second half of the 4th century, second half of the 6* century, first half of the 8th century (?), second half of the 10th century, first half of the 14* century, first half of the 16th century, second half of the 17th century, and second half of the 19th - first half of the 20th century. These phases repeated in about 200 years intervals, except of those involving the strong earthquakes of 365 and 1303 AD (Ms = 8,0-8,3), for which the preceding intervals increased to 300-350 years. Against this background, individual rare, but rather long epochs of active Seesi-mcny can be related to the periods from the second half of the 4* to the second half of the 6fll centuries (the Early Byzantine Paroxysm) and from the second half of the 17th to early 20th century. Both were characterized by seismicity increase (considering improved record of earthquakes since the 18th, and particularly since the 20th century) and seismic activity peaks recorded in the beginning and in the end of each epoch. Although periods preceding these epochs each had a complex pattern with ups and downs in earthquake number and energy, the general tendency was on the increase.

In Province II, the number of earthquakes and amount of released energy are the greatest in Zone 5 (Fig. 59-61), where seismic activation intervals are estimated at 200-250 years, or, at a divisible value of 450-500 years. Similar activation periodicity is observed in Zone 4, but activity peaks in Zone 5 are shifted several decades ahead of the respective peaks in Zone 4 [Trifonov, Karakhanian, Assaturian, Ivanova, 1994]. In the meantime, the peak observed in Zone 5 late in the 9ttl century changes to a short-term decline followed with a rise reaching its maximum in the second half of the 12* - early 13* centuries, while maximum activity peak in Zone 4 falls to early 11* century, but seismicity indices in the 9* -10* and 12th - first half of the 13* centuries are low. The time-series of seismic phenomena in Province II (Fig. 56-58) reflects an integrated effect of all events that occurred there, but, for larger part, of those related to the most earthquake-prone zones of Levant-Eastern Anatolian- 5 and the eastern part of the North-Anatolian-4, as well as to Zones 6 and 7. The Early Byzantine Paroxysm can be also identified in this Province, although it started earlier than in Province I (the 4th-5th centuries AD). Like in Province I, an epoch of activation in Province II coincides with the second half of the 17* - early 20th century, but activity peak here falls to the second half of the 19ril century, i.e., again, it precedes the respective peak in Province I. The epoch of activation in the 11*-13* centuries peaks at the first half of the 12* century, while in Province I that was the time of activity decline.

In Province III, the time of seismic activity peaks varies zone to zone (Fig. 62 and 63). In some cases, such differences can be attributed to the wave of activation moving from the south to the north (the first half of the 9* century in Zone 8 - second half of the 9th century in Zone 9 - first half of the 10th century in Zone 11 and first half of the 12* century in Zone 8 - first half of the 13* century in Zone 11), although such correlation is not established for the rest of activity peaks. A characteristic common for most of the zones in this Province is almost total absence of any signs of the Early Byzantine Paroxysm along with the shift of the last activation epoch to the second half of the 20* century. Zone 11 (Copeth Dag), structurally linked with the Caucasus, has something in common with the western Provinces. The last activity peak in this Zone is related to late 19* century, followed with activity decline up to the end of the 20* century. This, as well as minor activity peak in Zones 8 and 11 in the second half of the 17th century, indicates synchronism of activity variations in all three Provinces. In the meantime, an epoch of activation in the Middle Ages,∙ similar to the one established for Zone 5, can be noticed in Province III, particularly in Zagros. An integral seismicity pattern for Province III (Fig. 56-58) does not indicate clear periodicity, but 200-250 years intervals between activity peaks are more frequent.

Analysis of earthquakes in Province IV (Fig. 64 and 65) can add little to the established regularities, considering that till the 19* century seismic events were recorded only in Zone 14 and in the north of Zone 13, that were under the cultural influence of the Iranian- Islamic world. The number of reported earthquakes was increasing steadily till the second half of the 19th century, mostly due to the accounts of mantle earthquakes with hypocentral

depths of > 70 km. In all zones (except nf Znnr 15) the amount of energy released in thr first half of the 20th century is, however, the greatest.

Unified histograms based on integrated data for all four Provinces (Fig. 56-58) show several epochs of increased seismicity, each including a numbrr of activity peaks. If wr - exclude the peak related tn the specific event of the Great Minoan eaoihquake-eonptiov that happened probably between 1500 and 1550 BC (Section 4.4), it is possible to identify three 200-300 year-long epochs of activation (although with diffrrent individual rates nf certainty considering changed completeness of earthquake record). As we do not consider thr merely hypothetical activity epoch related to the middle of the 3πi millennium BC, these epochs aoe: the eπtly second half of thr 2nd millennium BC, thr middle of the 1st millennium AD, and the end of thr 17th century - early 20* century AD. Each of these epochs had two main activity peaks. The agr of the second peak in the last epoch is different in individual Zones and Provinces. Its maximum in Provinces I and IV falls tn thr first half of the 20λ crntuiy, while in Province II and Provincr III to the second half nf thr 19*h and to thr srcond half nf the 20th centuries, respectively. Between these epochs, activity periods were recorded also in the 4th century BC and in the 12*h - eπoly 14*centuries AD. We attach less importance to these two, considering that the fiost one had relatively small values of seismic activation indices, and that the second period, the 12*h - early 14*h centuries AD, although releasing seismic energy in the amount commensurable tn the same parameter of the Early Byzantine Paroxysm, was neerrteeless characterized by lower level nf activation, taking into account that the area covered by strong earthquake records had by the time increased essentially.

Against the background of described centuries-long fluctuations, more frequent changes occur as well: these πre identified by alternation of peaks and declines in the number nf rπtth- quakes, just as in the amount nf energy they release. Activation periods of 200-250 years, in a sense similar to seismic cycles defined by S.A. Fedotov [, 1968], are typical fnr individual zones. Despite certain asynchronicity by individual zones, the timing of these periods is smoothened at the regional scale and most often they take form of activity peaks 11^0- ring each 200-300 years.

3.2.4. Frequent engiatians oo gsms oeigmieiiy uhe ghh ceoth^ Brsed on the Catalogue of Strong Earthquakes (Appendix 2), we analyzed distribution in time of the number of earthquakes and thr amount nf seismic energy they released during the second half of the 19*century and throughout the 20*h century both for the reginn as a whole, and for its individual seismntectonia provinces and zones (Fig. 65-82). Our calculation of intervals separating neighboring seismic peaks reveals a regional-scale rhythm of seismic activation with a period of 10,5 2,5 years for crustal ( ≤ 70 km) and mantle ( > 70 km) eaothquakes, similarly. Energy release by the coustal earthquakes in 1920-2000 demonstrates the most clear wave distribution with a period of about 12 years: its autocorrelation function coefficient is clnse to 0,8. In individual provinces and, even mnoe so, in individual zones, seismic energy release rhythm is not that rrgulao, although close time inie-vals. between activation peaks πte recorded in such cases as well.

3.2. Influengc co est'rog ensohhuuaes into the Eastern Oykumena population

Deaths and injuries, destruction nf housing and other niouctures πte the most tangible effects of strong eaothquakes, and theit rate has been always determined by a combination of ∙ natural and social factors. Apart of earthquake power and intensity, natural factors include climate conditions and seasonal vaoiatinns, as well as time of the day, when earthquake occurs. Direct effects of earthquakes have been often added to by land surface defnrmation, landslides, rock-falls and mudflows, which led to additional damage and casualties, and rendered large agricultural lands unusable. Such effect has been enhanced by damage caused to irrigation systems, and by changes in hydrodynamics and ^-^^of underground waters. Seacoasts have been most vulnerable in deformation-related earthquake effects. Apart of population density in the epicentral πtea, affected society's stπvdπths of living, sncial secuoity and

health care, its current state, cultural traditions and building practice are among the most important of the social factors. Therefore, in the sense of a disastrous event, earthquake is rather social than natural phenomenon.

Mechanical injuries are responsible for a greater part of damage caused to populations life and health during strong earthquakes. Dead-to-injured ratios vary in a wide range and approach about 1/3 on average [, , 1998]. Severely wounded and slightly wounded numbers relate one to the other as 1 to 10 on average. Women, children and elders prevail among the dead and wounded. In addition to such direct loss, effects of fires, growth of infectious and neninfectious diseases, and psychological traumas have been always among important damage contributors. Most complete information about earthquake effects is related to the 20th century. Similar estimates for historical earthquakes and, in particular, for events studied by archae- and paleossismelogical methods are much less exhaustive (Fig. 83). Information about casualties of not less than 5,000 is presented in Table 3. Even with its known incompleteness, the histogram of casualty rate distribution in time (Fig. 84) is to a first approximation comparable to the histograms of released seismic energy distribution. Therefore, this seismicity parameter can be used for a preliminary assessment of plausible seismic impacts on the life and activity of the affected population.

Our analysis of strong earthquake effects indicates that whatever strong single events have been they seldom represented the cause of substantial historical changes. A stable state on its rise managed to recover the damage caused by destruction, while human losses were compensated by migration and, with time, by natality. In a politically unstable state, or in one under excessive economic stress, a natural event of extreme character could disrupt the unstable equilibrium, and lead to irreversible changes at once, or later on. Most probably, the Great Minoan earthquake-eruption played such role for the Minoan state (Section 4.4). Similar situation was more clearly pronounced during the seizure of the city of Behoura (south-west of Lake Sevan) by Urartian troops of Arghishti the 1st early in the 8a century BC, and during the seizure of Ani by Turkish troops in 1064, when the siege force was much greater than that of the defenders and the natural disaster just speeded up the inevitable events (see Chapter 6).

Apparently, the century-long epochs of increasing number of earthquakes and their total energy had greater historical importance. Earthquake impacts of this kind facilitated the conquest of Greece by Dorian-Illyrian tribes in the 13* century BC. In a similar manner, the Early Byzantine Paroxysm in the middle of the 1st millennium AD aggravated social and economic difficulties, and complicated the military state in the Eastern Roman Empire. See detailed analysis of these events in Section 7.3.

Chapter 4

VOLCANISM

4.1. Maniffstetiars vOHoloocns valccnii^ is the Ersteas Oykumesr

In the Eastern Oykumena, there are two main volcanic areas with the Holocene and present-day volcanoes. One of them is the volcanic zone of the Crsts-Hellen arc in the southern part of the Aegean Sea. Of all the Holocene volcanoes in the zone, the scale of effects generated by eruptions of Santorini (Thera) is the largest. The second area is a discontinuous zone oriented transverse to the Alpine-Himalayan belt (Fig. 85). The zone strikes from the Levant fault zone in the Arabian plate up to Elbruz Mt. in the southern margin of the Eurasian plate and spreads into the inner part of the belt (Armenia and adjacent parts of Turkey and Iran). The zone can represent a thermal anomaly of mantle origin that is discordant relative to the crustal collision structures of the belt. Composition of the volcanic products depended on the composition of rocks in magmatic sources at depths of about 40 km. Local structures of the belt, controlling the centres of areal volcanism, were represented by extension zones in front of the thrust blocks, or in the pull-apart structures or accompanying strike-slip faults.

4.2. The SpunSO Hinghamis in Armeπia

4.2.1. Yousg geologicrl foamrtiods rsS theia rge; nachnnrlrgicrl Srtisg. The Syunik pull-apart structure [K^akhanian et al., 1997] has formed in the Khhnarashr dextral fault zone (Fig. 86). The Middle Eocene basaltic-andesite porphyrites, Neogene rhyolite-dacites, and Lower and Middle Pleistocene basaltic-andesite lavas have provided substrata for this structure, filled up by the Late Pleistocene and three generations of the Holocene basaltic-andesite lava (Fig. 87-89; Table 4). Moraines of the last glaciation cover the Late Pleistocene lavas, but are overlain with the Earlier Holocene ones. The two later generations of the Holocene lava overflowed an area of the Chalcolithic petroglyphs dated to the end of the 5* - early 4t, millennia BC (Fig. 90 and 91). The upper age limit of the eruption of the third generation lava was dated by the age of a burial mound (3650-3350 BC) built using boulders of this lava. Thus, the second and third generations of the Holocene lava were erupted in the first half of the 4th millennium BC.

4.2.2. Tectonics of the Pyusik stauctuae. The Syunik pull-apart structure formed between the terminal parts of two en 6chelon segments of the Khanarassar dextral fault zone (Fig. 87). There is a component of subsidence associated with normal faulting on the western and eastern boundaries of the structure; nevertheless, the dextral slip component continues to be predominant not only on the terminations of the strike-slip fault zone segments, but even on the western and eastern boundaries of the structure. Dextral component of the slip diminishes southwards on the eastern boundary and increases on the western boundary, but the total slip remains the same as in the other parts of the Khanarasar zone. All of the Holocene and majority of the Late Pleistocene basaltic- andesite volcanoes are within, or on the boundaries of the pull-apart structure. The Holocene volcanoes form chains located either along the continuation of normal and normal-dextral faults, or along overstep zones of their en echelon segments, i.e., the volcanoes mark extension of the pull-apart structure.

4.2.3. Relrtiosshio of rctiae fruits rsS aolcrsism. In the considered area, seismic profiling by the refracted waves method detected two areas of seismic wave propagation anomalies at depths of 1,5-2 km, that were also identified by thermal anomalies (Fig. 87). One of these areas is just under the Holocene lava and the other is a little further to the northwest, in the Late Pleistocene margin of the Syunik structure. Perhaps, the anomalies are produced by a deep-seated source of warmed up and partly melted rocks. Faults of the structure bear signs of paleoseismic displacements (Fig. 92). One, or two strong earthquakes occurred in this area in the middle of Holocene, after the petroglyphs had been created. The earlier of these earthquakes is dated to 3960-3650 BC, i.e., it approximately coincided with the eruption of the second generation of the Holocene lava.

We suggest that the considered events could start with a strong seismic pulse that renewed the existing faults and created new ones. These faults reached the deep-seated thermal magmatic source and had served as channels for magma transport until the source was exhausted. A calm epoch that followed was interrnpten by the next strong earthquake and eruption. There could be two pulses of such associated seismic and volcanic re-activation in the middle of Holocene.

The Syunik structure is of interest not only for this tectonic and probably seismic causality of volcanic eruptions; the Chalcolithic petroglyphs in the area can be hypothetically interpreted as evidence of the early arrival of the Indo-European cattle-breeder tribes to Armenia and, perhaps, to the Trans-Caucasus (Section 6.1.4).

4.3. 8^^ﳺ^Spria

4.3.1. Locrtios of PoSom rsS Gomoaarh. The Bible provides controversial information concerning location of Sodom and Gomorrah. On one hand, it tells the cities were in the region of the Siddim Valley, ...where the Salt Sea is now, [Genesis, 14 : 1-3], i.e., it was the southern part of the Dead Sea. On the other hand, to look at the destroyed cities Abraham...went to a place, where he stood in the face of God [Genesis. 19:27], and that was a place

near Sikhem, ihr ruins nf which were identified in Samaria, on the wesirrn bank of the Jordan River [, 1998]. According to the Bible, the Lord hestrnyeh every living thing in Sodom and Gomnrrah with fior and sulfur, and Abraham saw how smokr was rising from ihr ground as a smoke from an oven [Genesis. 19 : 28]. The Bible attests also that the neighboring Siegor was no* affected. This evidence allows us to suggest volcanic. eruption as the most probable cause of the described disaster, but if sn, it could hardly happen in Sikhem, or in the Siddim Vallry, since reginnal signs nf eruption as young as the nne supposed have been found only in the southwestern Syria and an adjacent part of Jordan.

4.3.2. Holocene volcanism in the southwestern Syria. To the south and to the SE of Damascus, fields of Pliocene-Quaternary basaltic lava and cinder stretch fπo a distance of 450 km [Geological Map..., 1964; ., 1968] (Fig. 93). In this πteal volcanism, individual centres group to form chains, striking io thr NW, and mark extension πteas that branch from the active left-lateoal strike-slip Levant Fault. The lava flow of Kra looks the most recent; it was erupted by a small volcano neat the today's village of Rdemet Ash- Shakhur and spread for 32 km to the east and to thr NE (Fig. 94). Terminal sections of this flow aneerrh Khirbet-Umbashi and Hebarie, the remains of two settlements with mass accumulation of bones [Dueertret, Dunand, 1954-1955; , -, 1988]. In Khirbet-Umbashi, the bones soldered into the lava bottom and firmed, along with other settlement remains, an upper culture horizon within the layer πf carbonated pebble-stone and gravel oaau1oivg on the uneven surface of the Late Pleistocene lava (Fig. 95 and 96). Among the bones, those belonging io domestic animals and gazelles are prevailing. The radiocarbon age estimate for the bnnes is 2880-2460 BC, and ceramics found in these ^^^was dated by H. Saliby io the second half of the 3κi millennium BC (Fig. 97). We suggest that the seiilemenis and the animals perished from volcanic gases, and the lava coming laieo paitly covered what had remained by that time. A necropolis located nearby contains numerous standard burials of the considered period, and most prπbably, it served the burial place for ihnse whn had no* been covered with lava.

4.3.3. Correlation between the legend about destruction of Sodom and Gomorrah and the eruption of Kra. The biblical division of pastures between Abraham and Lot does not seem io be contrary io locating Sodom and Gomorrah in *he south of Syria and io *heir suggested destruction by the lava flow from Koa.

...Lot selected an area in the vicinity of Jordan; and Lot moved to the east... and set up his marquees up to Sodom [Oenesisl3 : 11-12]

Evidence in support of this is contained in the texts of the 3rd millennium BC, found during *he excavations of Ebla (Tell Mardih, 30 km io the southwest of Aleppo), which mention both Abraham, and the cities of Sodom and Gomorrah lost in fioe; however, the translation of these texts is still in be revised [, 1998]. In the meantime, assuming that the lost cities wroe in Syria (in contrary io whai the Bible says), we would hardly explain how Lot could reach Sier∏r in few hours (a distance of about 200 km), and how Abraham could see whai happened to *he cities from a mountain. It is not impossible, that the legend about the desioua- iion of Sodom and Gomorrah combines collective memories about two events. Actually lnca*rd in the Dead Sea reginn, Sodom and Gomorτah were destroyed by a natural disaster, most probably, by a strong earthquake, but the fresh memory about two settlements perishing ftom a volcanic eruption caused the population io equate these iwn events, which strongly enhanced the didactic effect of *he legend.

4.4. TTh Grrnt Mingoa aroetiop co fire aaaiheini

4.4.1. Data on the Thera eruption. The Santorini (Thera) volcano is situated in the Cre*e-Hellen calcalkaline volcanic zone (Table 5; Fig. 98 and 99). Today, Santorini is represented by ruins of a caldeoa ring up io 13 km in diameter. According io *he original views [Mπrinaios, 1939] the caldera formed duoing the Great Minπan eruption in the middle of the 2nd millennium BC. However, laieo studies proved the Great Minoan eruption just completed

formation of the caldera, which started about 21 ka BP (Fig. 100) [Sbrana, Vougioukalhkis, 1996]. Therefore, estimates of actual volume and weight of eruptive material provided by the Great Minoan shall be essentially less than considered previously, although they still comprise considerably large figures.

S. Marinatos [1939] found ruins of a Mi^an town buried by the Great Minoan eruption products in the south of the island, near the present-day village of Akrotiri. The town was dated to the Late Minoan epoch (LM-IA). As indicated by the excavations, a strong earthquake preceded the eruption, but its early precursors permitted inhabitants to leave, taking along the necessaries. They had time to come back and to start the repairing, but the eruption made them to leave hastily. It happened probably in early summer, before gathering, and produced a 6m-thick layer of pumice and tephra in Akrotiti. It was a single eruption of the Plinian type [Doumas, 1990].

4.4.2. IsSicrtioss of the eauotios rsS r oaeceSisg erathqurke is the Aegers aegios. Indications of seismic damage and ashes of the Great Minoan eruption were found in the ruins of the Knossos palace in Crete [Evans, 1902, 1930, 1935; Warren, Puchelt, 1990]. The damage was so severe that complete recovery was not possible throughout the LM-IB epoch till the Achaeans invasion in the middle of the 15ft century BC [MacDonald, 1990]. Judging by the thickness of ashes on the Aegean and Mediterranean ssa-bottem, the principal share of ash blow was directed towards East and SE. Its traces have been revealed in many settlements on Crete and on neighboring islands. Excavations of Seraglio in Kos and Trianda in Rodes uncovered signs of two strong earthquakes within the layers corresponding to the LM-IA epoch. There are indications that immediately after the second earthquake the ruins were covered with ash [Marketou, 1990]. The casualty rate and decrease of settlement area after the disaster were particularly high in Tian^.

4.4.3. Eruotios Srtisg oaoblems. There is much debate about the age of eruption among high and low chronology advocates, who date the eruption to the second half of the 17th, and to the second half of the 161 centuries BC, respectively. The archaeological dating is based on the correlation between the Minoan culture and dynasties of the Ancient Egypt. According to the high chronology, the LM-IA epoch corresponded to the 13* Dynasty and the period of the Hyksos, while the low chronology correlates it with the late Hyksos period and the onset of the 18dl Dynasty. P.P. Betancourt [1990] considers there are no decisive archaeological arguments in favor of either high, or low chronology estimates, while A. Renfrew [1990] gives preference to the estimates of high chronology. We think that chronological correlations of P.M. Warren [1990] are more convincing; this author considers that the LM-IA epoch continued from 1600-1580 to 1504-1480 BC, and Akrotiri was destroyed inl560-1550 or 1535^1525 BC. This is supported by the description of unprecedented storm, which is read on the stele of Ahmose the Pt, the 18* Dynasty founder (Fig. 101) in the Kamak Temple at Thebes. The storm could be provoked by ashes penetrating into the atmosphere during the Great Minoan eruption. Mentioning of the Pharaohs name on the stele allows dating it to the first 22 years of his reign. Considering that the stele was built some time after the storm, it can be dated to 1550-1528, or 1539-1517 BC [Davis, 1990]. The Ancient Greek myth about Deucalion and the Flood could be related to a tsunami during the Great Minoan earthquake-eruption. According to the Paros Chronicles of 265 BC, it took place in 1530 [, 1989].

Samples taken in Akrotiri were most informative for radiocarbon estimation of the age of the Great Minoan eruption. Measurements conducted in different laboratories [Friedrich et al., 1990; Nelson et al., 1990; Housley et al., 1990; Hubberten et al., 1990] (Table 6) provided a series of age estimates, ranging from 1674-1606 to 15541534 BC and indicating that respective probabilities of eruption date as the 17th and 16th centuries BC are distributed as 70% to only 30%. The high date was supported by the evidence of acid eruption in an ice borehole Dye3 in Greenland [Hammer, Clausen, 1990] and by tree ring growth anomalies in California [LaMarche, Hirschoeck, 1984] and in the Old World [Baillie, 1990]. However, these findings can be related rather to the grand eruption of Aniayakchak Volcano in Alaska

[, , 1997]. Calibration cuoee eαriaiiovn enable both high and low interpretations of age estimates obtained in Akoπiioi (Fig. 102) [Weningeo, 1990]. Finally, with the remaining uncertainty of the eruption date estimate, we neve1teelenn base on the archaeological data io give preference io the lπw estimate.

4.4.4. The Gheat Minoan eeantsou and ttιe Aegean World. غGreat ̳ ^ iiπn happened in the epoch of the highest blππm of the Mmoan civilization (LM-IA), whan its centers in Crete and oihao islands ware, most probably, united undao the power of Rossis. A severe eπoihqu∏ka and subsequeni eruption undermined iha powao of this stain, which, in iha fight of Crete against Achaeans who earliao had depended on Minoans, weighed in the favor of Achaeans. This happened 50-100 years afiao the eruption, in 1470-1450 BC. A natural disaster could be reflected also in Platos legend about the daaih of Atlantis, narrated in his Thymeus and Creteus dialogues.

Part II

INTERACTION OF GEODYNAMIC AND HISTORICAL PROCESSES

Chapter 5

INTERACTION OF NATURAL PROCESSES WITHIN TECTONIC SYSTEMS AND THEIR INFLUENCE ON HUMAN LIFE AND ACTIVITY

V.S. Ponomarev and V.G. Trifonov [, , 1987; , , 1990] introduced a concept of tectodynamic or tectonic system meant iπ understand an integrity of natural processes inia1-rela*eh in a geolngical medium, which, aiiher dioacily, or indirectly, causa the lithosphere io move and tectonic structures io drvelnp in it. Assessing impact of these processes on human activity, we consider open systems, based on social, technological, economic, and political conditions in human communities (community of culture and ethnicity, state, sei*lamani, etc.), invπlving ivieoaaiion with a naiuoal environment. The latter determines io a considerable extent *he chπtacier of economic activity and the way nf living. Such systems are exposed in the effects of external factors, i.e., relationships with neighbors, and changes in nature, including those caused by geohynamic processes.

This interaction between natural and social processes in the aouose of history is attisied by all case studies discussed in the chapieos above. Generation of agriculture in iha Fertile Crescent was prepared by the appearance of permanent settlements and by the development of necessary implements during the preceding stage of plant aolleaiing. The natural factors played their roles in dur cnurse, with climate improvement following io the las* glaciation, and with active tectonics, creating sui*abla landscapes, and contributing io formation of fao- *ile soils, water sourcrs, and diverse seed stock. Thr sama fac*nos (perhaps, except of seed material diveosiiy and pre-existing experience) acted in adjacent regions, whera agriculture spread under *he influence of iha Fertile Crescent. Combination nf climatic changes with active tectonics reflected in *he development of the Khoresm Oasis and Saryghamysh basin in the Aral region. Although periodic rise of agriculture in this area was faciliiaied by humidification, iha re-distribution of the predominant flow into Aral or Sπtighamine was mostly dependent on the behavior of active faults.

The foredeep basin of Mesopotamia has bean under the constant impact of ^^subsidence accompanied by formation and growth nf anticline folding on the northeastern side of iha basin, and by its filling with sedimeniaoy material, delivered by Euphoaies, Tigris and *heir tributaries. During the historical period, *he shif* of this balance towards sedimentation reflacied in iha prograding of the Tigris and Euphrates deltas. During *he first half of the Holncane, these processes evolved concurrently with *he poni-rlacial growth of the oceans, iha last suoge of which siπtied early in iha 4*h millennium Be and flooded a pπti of the basin. The flooding forced the local population io leave the place and saived iha basis foo the Lost Paradise legend. The transgression added io with heavy showers and surge of water from the

gulf caused grand flooding that was reflected in the Deluge legend. Intense rise of settlements that started not until the sea level had stabilized concentrated at several centers. These centers became the earliest Sumerian city-states and seaports, but lost this function later because of the delta prograding.

The role played by the severe earthquake and the following Great Minoan eruption in the history of the Minoan state and its relations with the Achaean Greece is one further example of interaction between natural and social phenomena.

Chnotnr 6

INFLUENCE OF GEODYNAMIC PROCESSES ON THE DEVELOPMENT OF PRE-HISTORICAL SOCIETIES AND STATE INSTITUTIONS IN ARMENIA

6.1. Histerical-anahennlooical ffamewook

6.1.1. Main hrisrii^itl aata. Sn Ϻ *th milleιmia Bq there were were MesolitSSc centres in the Trans-Caucasus and the eastern Caucasus (Fig. 103) [, 1993]. Scholars relate the dissolution of a single proto-Caucasian linguistic community into its western and eastern branches to the 6t--5,h millennia BC. Representatives of this community populated the Trans-Caucasus, Northern Mesopotamia and the northeastern Mediterranean. As it is possible to build an evolutionary series of cultures developing in the western Trans-Caucasus from the Chalcolithic to the Late Bronze epoch, we may assume that todays population of the western Caucasian represents relics of the western language branch. They spread from Central Anatolia and the south-eastern Black Sea region (k-ati) up to the nort-western Pre-Caucasus, where similar features were revealed in the Maikop culture dated to the second half of the 4th - early 3rd millennia [, 1977; , 1990]. No traces of any influence from the western Caucasian area on the formation of cultures in Armenia have been revealed.

The Ceramic Neolithic in Armenia is represented by artifacts found in Hatunarh and Tsakhnunk settlements identified wit- the Shulaveri-Shomutepe culture in the middle course valleys of the Kura River and its tributaries (Fig. 104). The evidence of early agriculture was found in the settlement of Shomu-Tepe in the Akstafa River. Large settlements in the Kura River basin are multi-layered; some of them bear signs of transition from the Neolithic to the Chalcolithic [, 1975; , 1982]. By archeological correlation, the Chalcolithic and the Neolithic in the middle course of Kura are dated back to te 51.th millennia BC and to the 6* and even late 7m millennia BC, respectively [, , 1970]. The mc age estimate for Shomu-Tepe is 6430-6250 BC. The age of the Sioni unit given by the radiocarbon dating of a sample from the Berikldeebi settlement in Shida Kartli (3820-3640 BC by 2a) takes an intermediate position between the Chalcolithic and the Earlier Bronze age [Badaljan et al., 1992]. In Armenia, tis period is represented by settlements of Tekhut, Ksyah-Blur and probably by lower horizons of Shengavit and Mohra-Blur.

Concurrently with agricultural cultures of the Neolithic and Chalcolithic, absolutely different cultures were developing in mountains south of Lake Sevan. These cultures are represented by a part of petroglyphs in the Syunik, Vardenis, and Ghegam highlands. There are two generations of petroglyphs in Syunik [ ., 1969; , , 1970; Karakhanian et al., 1997; ., 1999]. Generation I petroglyphs are hypothetically dated to the Neolithic and include a relatively small number of animal pictures archaic by performance technique. Petroglyphs of Generation II (in Syunik and probably Ghegam- Vardenis) were made by a community of cattle-breeders, who combined cattle breeding withunting (Fig. 90, 105). Arming and hunting outfit of these cattle-breeders was typical for the Chalcolithic; they domesticated dogs, goats, and caws, and also horses and could use them as transportation means. The petroglyphs are dated to the end of the 5λ - early 4ft millennia BC.

Te flowering of productive economy and primarily agriculture, which started in the central and eastern Trans-Caucasus since the early Bronze Age, is reflected in te Kura-Araks

culture (KAC). Having occupied the areas nnw coeareh with πtiifaais of the Laie Eneolithic agriculture, this culture spread beynnd, iπ the Easiarn Azerbaijan, Daghestan and eastern Tuokry (Fig. 106). Later on, KAC spread into the region nf Lake Urmia, as well as into the eastern Mediie1oavaan, wherr similar ceramics and Kirbet-Kerak-type πtchiiaciure had been developing. This all gave rise in a hierarchy of settlements with larga populated areas (6-10 ha and up *o 12 ha in Arich, the Shioak Plateau) each surrouvhed by sevaral mediumsize (3-5 ha) and numerous small (up io 1,5 ha) ones. Tha settlements contained religious sirnaiures, or central squares, with sanctuaries, paved s*reeis and public granaries. The principal KAC domain developed in three stages, including formation on the local Eneolithic basis, maturity, and the lair stage. Laie in *he maturity stage, settlements tended in anvaen- irair along high-watao rivers. Occupation of high foothills and mountain valleys started in the same period and continued laiar. Sri*lemenis, including large ones, appeared in difficult access places, protected by natural landscape fea*uoes [, 1993].

According io R. Badalyans data [, 1996], *he archaic KAC phase is most precisely dated by ihr age nf a sample from *ha lower horizons nf Khornm (35*-30centuries BC); its adult phase can be related in the 29t*-26*h aan*uries BC (age nf a sample from the uppro layers of Mi^aHur), and finally, the late phase can be constrained by ihr 26th-22nd centuries BC (age of samples from Seenravii unit in Kπmui and Shengavi*) (all dates πte by 2π). The study of *he Finleiovn site in the east of the city of Vanadzor, allowed us io date ihr final (Beden) stage of KAC io 2500-2300 BC (Section 6.2.1). The aga of ihr late KAC coincides with the age of the eπtlier Trialeti (Beden) kuogans related io the Middle Bronze epoch.

The Trialeti culture (TC) formrd within the principal domain of the KAC ai tha boundary of ihr Early and Middlr Binnzr. Age (Fig. 107). A common fraiuor πf *ha TC and later Karmir Berd, Sevan-Uzerlic, and Kyzil Vank cultures was predominance nf burial grounds (necropolis) over settlements, *hr number and thickness of layers in which were sharply decreasing in time. This suggests decrease of population and indicates that cattle breeding played an increasingly more important oole. Among burial grounds of the considered period, kurgans dominated; sometimes they were complex sitnciures and contained rich sei of implemrn*s, which aiies* io social and material siraiialaaiion of the society that was maximum ai *he final, prosperity stage nf the TC. Painted ceoamics of diverse styles produced with potter's wheel is ano*her common feature of these cultures, along with progress in manufacturing of metal products and jewelry.

Drspiir different opinions cnvaernivg the age and aorrelaiiovs between the Middle Bronze cultures [, 1993; , , 1996] (Fig. 108), all authors agree that in the 16*h BC these cultures were changed and in the middle of the 15*h crniury BC completely replaced by the Late Bonnzr Lchashen-Metsamor cul*ure. This culture is represented by stnne stonatnres in settlements and cemeteries; a small pile of stona is built over each grave and ^1101^^ with a cromlech. Sometimes, cromlech surrounds several graves. We assume that having claar orientation to cattle-ereedivr in the Sevan region, the Lchashen- Metsamor culture was spreading *0 areas in *he west of Aomenia, where agriculture and various crafts added to the range of its activities and where one of the richest monufvevis of this culture has preteoeeh (Meisamor). In ihr Early Iron epoch, Lchashen-Metsamor settlements were still populated, and wire hrstroyed, at least in the south, by the Uraotian conquests. To break the oesis*ancr, invaders ftom Urartu had to undeo*ake several campaigns, victorious results of which are reportrh by *he texts of Aogishti the 1s* (787-766 BC) and Sπtdouri the 2nd (765-733 BC).

The culture of Urπotu represented a more developed society, which was reflected in building practice, quality of ceramics and the very fact *ha* a single Uraotian state came to change the population grouping around faw settlemen*s by *he tribal principle. Urπotu, essentially weakened by Assyrians' militaoy campaigns of Tirlatpalassar the 3rf in 735 BC and Sargon the 2nd in 714 BC, was aruseeh in 590 by Mydia, which had defeated Assyria in 612 BC. After loosing their hegemony in Armenia, Urartians meoged with the local population *0 form an ancient Aomenian ethnic community. In 550, this community first claimed

itself to be a state, which later developed during several centuries under the conditions of actual or formal dependence on the Ac-aemeeians, and later the Seleucians.

Under the rule of Artashes the 1st (200-159 BC) the new state became independent and spread across the entire area of the Armenia Highlands. It reached its greatest power in the reign of Tigran the 2πd (95-56 BC), but later turned to an arena of lingering conflict between Rome and Parthians [, 1990]. In 224-226 AD, after the rule of the Parthian dynasty in Iran was overtrown by the Sassanians, a two century-long struggle began between Iran and Armenia, and Armenia was several times occupied by Persians. In 301, king T^at the 3rd was baptized and shortly after the whole of his country adopted Christianity. According to the treaty of the year of 387 between Feonesius te 1st and Shapur the 2∏s, western Armenia became a province of Constantinople, while the eastern one was joined to Persia ie 428. Under the Byzantine protectorate, the western Armenia gained a considerable degree of independence, but lost it in 1064 under the pressure of Osman Turks. It was freed of that heavy dependence early in te 19t- century, when both parts of Airarat became part of the Russian Empire. In 1918, Armenia gained independence, and in 1920 it joined the USSR as one of its Republics. The present-day Republic of Armenia exists sincel991.

6.1.2. Archertenical ^ of the ^^the depression (Fig. 135. and 136). The southern slope of the central hill is d^mpted with a normal fault (Fig. 137). Trenching in this area revealed signs of two earthquakes, *he fiost of which occurred in the La*e KAC epoch, while the other happened somewhat later [Avagyan, 2001; Philip et al., 2002]. In tha Garni Fault Zona, sources of strong earthquakes are confined *o the identified sites of similar in-iahalon arrangement of strike-slip fault segments, additional compression (Fig. 139-141). Correlation of epicentres with in-echelon arrangimiv* sites has been reported also foo the zona of *he right-lateral North-Anatolian fault, characterized by similar n*ouciural features of *he Erzincan basin located in the aast (Fig. 142). We proposed the term of push-inside structures for such compressive strike-slip duplex-basins [Trifonov et al., 1995]. Their tendency tn sagging is hetermineh by higher density of the Earth's cous* in *he fault zone.

6.2.2. Almond-shaped structures. In a larger scale, *he tendency of duplex structures forming at sites of en-aerlon πrrangement of strike-slip segman*s is repeated as almondshaped combination of large fault zones with a strike-slip component of motion. In the nno*h- rrn Aomeviav Highlands, we studird two almnnd-shaprd stouatures of this kind: Ghegam- Vardenis and Aoarat (Fig. 138). These stouatures are defined by faults with predominant dex- *ral component combined with a vertical one. On the northim and southern sides of *he almond structures, vertical motion component is represev*ed by reverse faults. In the Ghegam-Vardenis structure, these arr the Pame∏k-Seean fault in the north and the Arpa- Zangezour branch of *he Gaoni Fault in the south (Fig. 143). Along thr wrstern and stepped eastern rdges of the stouc*ure, wherr faults arr striking to the NNW, *he vertical component is, in places, contrastingly rrpresen*rd by normal faults. In *he wrs*eon pat* of the Gergam- Vardrnis stoua*ure, we ^an embedded almond contour of Geera1n with vnoth-trend- ing chains of Late Quaternary volcanoes (Fig. 144146).

The Ararat stouature is (difmad by binding fault zones, including the Bπlikghel fault zone in the SW (continued eastward by *he Noo*h Tabriz fault) and thr Sarda^ae-Nakhichevan Fault in the NE (Fig.. 147). In this πtea, we observe transition from dextral strike-slip faults with reviise component in *he northern and southern edges of the almond contour to dex*oal faults with normal component in its western and eastern edges. Stiaightly linrar righi-latroal strike-slip Maku fault strikes along the axis of the almond con*nur. In *he nnr*hwast part of *hr structure, the Balikghel and Maku faults branch nut into numerous vnrmal-dex*.ral faults that shape a horsetail-splay structure (Fig. 148). These faults control locations of parasitic cones on Aoarat and on *he volcanic oiCfstempfrar∏ shfyO-poyif variatioss. The results Siscussed above inSicate synchronism of different perioS variations in te manifestations of seismotectonic aeS climatic processes, which cannot be explained by teir cross-influence. This puts forward a suggestion about teir potential regulation by orbital astronomic factors, playing te role of triggers of endogenous processes. V.I. Kaftan and S.K. Tatevian [, , 1996] substantiated te linkage between the short-eeried level fluctuations in the Caspian and changed solar activity index and angular Earth rotation velocity (Fig. 192). Variations in the angular rotation velocity correlate with earthquake frequency changes both in large seismic region, aeS on the Earth as a whole [ ., 1994,1999] (Fig. 194). A correlation is found between the 11 years loeg cycles (aeS longer cycles divisible by 11) of solar activity and magnetic disturbances oe one hand, and climatic variations (Fig. 193), associated phenomena, and seismic manifestations, on the other [, 1973; , 1987; see also Section 3.2.4]. Therefore, at the scales of years and tens of years climatic and tectonic canges correlate wit parameters of the Earth rotation, its magnetic disturbances and solar activity, which are, possibly, interrelated.

7.4.2. Mid-period variatirss is the Middle asd Late Holocose. Section 7.3 presents variations of climatic aeS seismotectoeic activity ie 12(^0-1800 years periods. By duration, these variations are similar to the century-long climatic rhythms identifies by A.V. Shniteikov, which, as he thought, could correspond to the period of constellation of the Moon, Eart, anS Sun, Seterminiπg tidal force changes. Iπ te spectrum of geomagnetic field fluctuation parameters, S.P. Bourlatskaya [, 1987] iSentified fluctuations in periods of 1200 aπS 1800 years (Fig. 195 and Table 10), related to changes in the parameters of the Earth rotation.

7.4.3. Lisg-period variatioss is the Ploistocese. Cycles of climatic changes identified for the Quaternary period comprise 41 ka in the Early Pleistocene and 100 ka ie the later period [Imbrie et al., 1984; RuSSimae et al., 1986; Bassiπot et al., 1994]. Cycles lasting for 19-23 ka, and for about 400 ka, are pronounced less clearly. Such rhythm is typical for activation of tectonic processes in mountainous areas [, 1972; , 1980]. M. Milaekovich [, 1939] was the first, who substantiated link of these variations with changes of solar activity intensity resulting from changes in the orbital parameters of the Earth. His interpretations were later made more precise [Berger, 1984; , 2000]. Suc cyclic recurrence is determined by changes of the Earth rotation parameters, including eccentricity (100 ka cycle), angle of inclination of the rotation axis to the ecliptic plane (41 ka) anS precessions - equinox advances (19-21 ka).

7.4.4. LimiOatioss of the astrosomic regulates of the variatioss. The discussed orbital-astronomic regulation of synchronism between tectonic and climatic events is assumed manifesting itself up to te scale of tectonic episodes (variation iπ periods of 1-2 million years). Variations in the manifestations of tectonic processes in periods of tens and unSreSs of million years (phases of Schtille, cycles of Bertrand anS Wilson) are determined by auto-fluctuations of endogenous activity of the Eart- anS influence climate changes of te same low frequency.

Chapter 8

HUMAN BEINGS AND the NATURE

8.1. Human Sei∏ss in 10eosirynmeoS

Most of natural anS social systems described in tis book belong to the class of open and dissipative systems that are capable of self-organization (self-perfection), wich makes tem more complex and reSuces the entropy they bear. Tis process is realized through destruction

of primitive sys*ems and increase of entropy in the medium volume encompassing all of thisr systems [, , 1986]. Assuming such self-ooraniza*ion ability of open systems to be the soul of the system (which is consistent with its metaphysical definitions), wr support the thesis proposed by P. Teilhπod de Chaodin [ , 1987], stating that the spioitual elemen* is i^eoeni not only in human beings, bu* also in poimitive systems of anima*e nature and even of africaem Considering that an en*ioa series of such systems can be built by the ivareasivg rate of theio complexity (rate of order, anti-entoopy), we have no grounds to regard human community as its upper limit and thus reject possibility of more complex systems.

If we assume that the ma*erial Universe as a whole, which is a closed system by its , 2004/4 -10997 268030 833-805 897-801 31 6.1 ., , 2004/5 -11657 109040 898-996 AD 886-1020 AD 32 6.1 ., , , 2050/3-4 -12321 3200120 1623-1371 1744-1206 33 6.1 ., , -10998 2580+100 827-543 897412 34 6.1 ., , , -11662 2690+40 894-805 910-799 35 6.1 ., -, -11654 222090 386-197 413-36 36 6.1 ., -, -11668 224060 383-207 402-166 37 6.1 ., -9342 3300360 2030-1129 2504-786 38 6.1 ., , , -9340 275040 915-836 977-819 39 6.1 ., , , -9341 2750+110 1002-802 1254-764 40 6.1 ., , , -11665 7800+100 6745-6481 6953-6455 41 6.2.1 ., , , -9916 1050+100 892-1148 AD 773-1213 AD 42 6.2.3 ., , -11667 26000800 43 6.3.2 ., , , -9909 6360140 5476-5208 5558-4986 44 6.3.2 ., , , -9910 5400150 4354-4043 4537-3944 45 6.4 ., , -10995 554090 4458-4263 4550-4200

: - , - , - , - , - , - , 1 - Trifonov et al., 1992

(Ms > 5,7)

Appendix 2

Catalog of strong (Ms> 5,7) earthquakes of Eastern Oykumena

Q

u

, , ,
l 2 3 4 5 6 7 8 9 10 11 12 13
l 18 32(X) 37,2 22 6,1 S 1+15 10?
2 19 -3000

900

- - - 28,9 51,3 7 S 7.6+15 -
3 18 -2500 - - - 38,4 23,3 6,1 S 1+15 9-10 -
4 20 -2500 - - - 36,7 50 6,6 S 3,+15 >8 -
5 10 -2500 - - - 40,9 44,2 6,5 S 2.7+15 - 15
6 18 -2500 - - - 35,3 36,1 6,2 1.4+15 10 -
7 26 -2150 - - - 31,1 35,5 7,3 S 1,4+16 - -
8 39 -2100 - - - 35,5 25,5 7,4 S 1.7E+16 -
9 8, 10,11,13,

20, 23, 26

-2000 - - - 38 58,1 7,1 S 9,+15 9
10 38, 39 -1890 - - - 35,5 25,5 7,4 S 1,7+16 - -
11 38, 39 -1750 - - - 35 25 7,4 S 1.7+16 - -
12 33, 38, 39 -1640 - - - 35,5 25,5 7,4 S 1,7+16 10 -
13 33, 38, 39 -1540 - - 35,5 25,5 7,6 S 2,7+16 10-11 -
14 38, 39 -1500 - - - 35 26 6,7 S 4+15 - -
15 38, 39 -1410 - - - 36,5 25,5 7,4 S 1.7+16 - -
16 38,39 -14( X) - - - 35,5 25,5 6,7 S 4+15 - -
17 10 1356 - - - 36 36 7,3 S 1,4+16 - 25
18 18 -1300 - - - 35,1 25 6,1 1+15 9-10 -
19 18 -1250 - - - 37,7 22,6 6,2 1.4+15 10 -
20 10,26 -1250 - - - 32 35,5 6,5 S 2/7+15 - 14
21 10 -1250 - - - 42,7 42,2 6,9 S 6+15 - 15
22 18 -1200 - - - 37,7 22,6 6,2 1, 4+15 10 -
23 18 -1000 - - - 38,8 23,8 6,2 1.4+15 10 -
24 20,23 -1000

800

- - - 36,8 49,5 7,1 S 9,+15 >9 10
25 10 -854 - - - 32,8 35,6 6,6 S .+15 - 15
26 10 -800 - - - 44,7 37,3 6,5 S 2,7+15 - -
27 4 -782 10 40 45,7 7,2 S 1.2+16 9 27
28 10, 22,31 760 - - - 33 35,5 7,3 S 1.4+16 - -
29 39 -600 - - - 38,5 22,5 6,7 S 4+15 - 12
30 10, 23 -600 - - - 35 45 6,5 S 2.7+15 - 25
31 10, 39 -590 - - - 33,8 34,3 7 S 7,6+15 - -
32 18, 22, 33, 39 -550 - - - 36,7 22,6 7 S 7,6+15 9 30

bgcolor=white>32
1 2 3 4 5 6 7 8 9 10 11 12 13
33 10,39 -525 33,8 34,3 7,8 S 4+16
34 32 -510 - - - 39,4 22,3 7 W 7,6+15 10 -
35 19 -500

900

- - - 30 51 5,9 S 7,6+14 - -
36 32 494 - - - 38,2 26,2 6,6 W 3,+15 8 -
37 22, 32 -492 - - - 36,8 22,6 6,6 W .+15 8 -
38 22, 32 -481 - - - 37,3 25,1 6 W 9.3+14 7 -
38 22, 32 -481 - - - 37,3 25,1 6 W 9.3+14 7 -
39 22,32 -480 - - - 37,9 23,3 6,3 W 1,7E+15 8 -
39 22, 32 -480 - - - 37,9 23,3 6,3 W 1,7+15 8 -
40 32 -479 - - - 39,7 23,3 7 S 7,6+15 9 -
40 32 -479 - - - 39,7 23,3 7 S 7,6+15 9
41 10,22, 38, 39 -479 - - - 40,2 .23,5 6,1 S 1,1+15 - 14
42 12, 18, 22,

32, 33, 39

464 - - 36,8 22,4 7 W 7.6+15 11 -
43 22 -431 - - - 37,3 25,3 5,8 6.1+14 - -
44

45

22

12, 22, 32,

33,39

427

-426

- - - 41

38,8

28

22,6

7

7

W 7,6+15

7,6+15

46 22, 32 -426 - - - 38,5 23,1 6,6 W 3,+15 8 -
47 22, 39 -420 - - - 38 23 6,1 S 1+15 - -
48 22, 32 -412 - - - 36,6 22,6 6,8 W 5+15 8 -
49 18, 22, 32, 39 -412 - - - 36,8 27,4 7 W 7.6+15 9 -
50 18 -400 - - - 38,8 23,8 6,1 S 1+15 10 -
51 26 -400 - - - 35,5 51,8 7,6 S 2.7E+16 - -
52 -399 - - - 37.8 21,1 6,3 W 1,7E+15 8 -
53 22, 32 -387 - - - 37,6 22,9 6,3 W 1,7+15 7 -
54 22 -373 - - - 37,3 25,3 7 7,6+15 9 -
55 18,22, 32,

33,39

-373 - - - 38,2 22,2 7 W 7,6+15 9
56 32, 39 -368 - - - 35,6 24,9 7,7 W .+16 10 61
57 18,22 360 - - - 40 26,5 6,7 4+15 9 -
58 10,23 -350 - - - 35,5 51,8 7,6 S 2,7+16 - 16
59 32 -348 - - - 38,4 22,5 6,7 W 4+15 8 -
60 132 -342 - - - 40,4 26,6 6,8 W 5+15 9 -
61 10 -331 - - - 36,1 36,1 6,6 S 3,+15 - 20
62 10, 32, 33,

38, 39

-330 - - - 40,1 25 7 W 7.6+15 10 15
63 39 -307 - - - 33,3 35,1 5,7 S 5+14 - -
64 39 -287 - - - 33,3 35,1 5,7 S 5+14 - -
65 10, 18, 22,

32, 39

- 282 - - - 40,6 26,6 7 W 7,6+15 9 14
66 12 -280 - - - 35,6 51,4 7,4 S 1.7+16 - -
67 22, 32, 39 -279 - - - 38,4 22,6 6,8 W 5+15 9 -
68 32, 39 -267 - - - 34,8 25 7 W 7.6+15 9 -
69 32, 39 -255 - - - 34,7 25,2 6,8 W 5+15 9 -
70 34 -250

60

40,7 44,7 6,5 S 2.7E+15 - -
71 10 -250 - - - 42,7 77,5 6,7 S 4+15 - 20
72 18, 22, 32 -227 - - - 36,3 28,3 7,2 W 1.2+16 10 -
73 18,22 -226 - - - 38,7 21,9 7 7.6+15 9 -
74 32, 39 -222 - - - 36,5 28 7,6 W 2,7E+16 10 -

bgcolor=white>9
1 2 3 4 5 6 7 8 9 10 11 12 13
75 22,33 -198

1

6 - - 38,3 23,9 7 7,6+15 10 -
76 18,32,39 -197 - - - 36,6 28,5 7 W 7.6+15 9 -
77 32, 39 -185 - - - 36 28 6,8 W 5+15 9 -
78 10 -184 - - - 36,2 36,3 6,1 S 1,1+15 - 15
79 32 -183 - - - 36,3 28,5 7 W 7,6+15 9 -
80 8,10,23 -150 - - - 44,6 38,1 6,1 S 1+15 - 14
81 22, 39 -148 2 21 - 35,3 36,1 6,5 S 2.7+15 - -
82 10, 39 -140 - - - 33,3 35 6,5 S 2.7+15 - 15
83 39 -131 - - - 37,1 36,6 5,7 S 5+14 - -
84 32 -130 - - - 38,4 28 6,8 W 5+15 9 -
85 32 -94 - - - 35,8 25 7,2 W 1.2+16 10 61
86 10 -09 2 28 - 35 35 7 S 7.6+15 - 20
87 22 -91 - - - 38 15,6 6,5 2.7+15 9 -
88 18 -90 - - - 40,7 22,5 6,5 2.7+15 9-10 -
89 18,22 -88 - - 38 30,2 7,4 17+16 10 -
90 10,22, 32, 39 -67 - - - 36,3 36,1 6,8 S 5+15 9 -
91 39 -65 - - - 37,8 29,3 6,1 S 1+15 - -
92 8,10,23 -06 10 - - 45,6 36,2 6,4 S 2.2+15 8 20
93 32 -46 - - - 36,4 25,4 6,5 W 2,7+15 8 -
94 39 -37 - - - 36,3 36,1 6,1 S 1+15 - -
95 39 -31 - - - 37,9 27,9 6,1 S 1+15 - -
96 10, 22, 26,

36, 37

-31 9 2 - 32 35,5 7 S 7,6+15 10-11 -
97 18 -30 - - - 35 25 6,1 1+15 9 -
98 18 -27 - - - 37,7 27,9 6,2 1.4+15 10 -
99 32 -26 - - - 41,3 19,6 6,3 S 1.7+15 9 -
100 32, 39 -26 - - - 37,9 27,9 6,8 W 5+15 9 -
101 10, 39 -26 - - - 34,7 32,2 7,3 S 1.4+16 - 25
102 32 -17 - - 38,4 27,5 6,8 W 5+15 9 -
103 10, 39 -15 - - - 34,7 32,2 6,1 S 1+15 - 14
104 39 -5 - - - 37 27 6,1 S 1+15 - -
105 8,11, 13,20,

23,26

-10 10 - - - 38 58,2 7,1 S 9,+15 9
106 28 5 150 - - - 39,7 46,1 6,9 S 6+15 - -
107 39 11 - - - 37,8 27,8 6,1 S 1+15 - -
108 12, 22,26, 32 17 - - 37,7 29,3 7 W 7.6+15 10 -
109 10,39 19 - - - 33,6 35 6,5 S 2.7+15 - 15
110 18, 22 23 - - - 37,1 29,3 6,1 1+15 9 -
111 32 23 - - - 34,8 25 7 W 7.6+15 10 -
112 22, 39 23 - - - 38,3 22,3 6,7 S 4+15 8-9 -
113 18, 32 29 11 24 - 40,4 27,7 6,8 W 5+15 9-10 15
114 12 32 - - - 40,5 31,5 7,4 S 177E+16 - -
115 10, 39 33 - - - 40,8 29,9 5,8 S 6+14 - 15
116 32 33 2 - 37,9 22,9 6,3 W 1.7+15 9 -
117 10, 12, 39 37 - - - 35,7 36,3 6,7 S 4+15 - 20
118 39 44 - - - 38,5 27,4 6,1 S 1+15 - -
119 32 46 - - - 40,3 26,5 6,8 W 5+15 -
120 39 46 - - - 36,5 25,5 6,1 S 1+15 - -
121 18,22 47 - - - 38,5 27,2 6,7 4+15 9 -
122 22 47 - - - 36,3 36,3 6,7 4+15 8-9 -
123 8,39 50 - - - 42,9 41 6,1 S 1+15 8 10

1 2 3 4 51 6 1 7 8 9 10 11 12 13
124 10, 39 52 41 24,3 6,1 S 1+15 14
125 10, 39 53 - - - 36,2 36,5 ,4 S 1.+16 - 30
126 18,22, 32, 39 53 - - - 38,1 30,2 6, S 4+15 9 -
12 32 55 - - - 39 26,8 6,6 W .+15 8 -
128 39 55 - - - 35 25 ,4 S 1.+16 - -
129 32 5 - - - 3, 28, 6,8 W 5+15 9 -
130 10, 22, 32,

38,39

60 - - - 3,8 29,1 6, S 4+15 - 22
131 39 62 - - - 36 25,5 6, S 4+15 - -
132 26 63 10 - - 45,2 36,6 6,4 S 2,2+15 - 20
133 32 65 - - - 3,9 28 6,8 W 5+15 9 -
134 18 66 - - - 35,1 25,1 6,9 6+15 10 -
135 32 66 - - - 38,5 28 ,1 W 9,+15 10 -
136 10, 18, 22, 39 69 1 2 - 40,6 29,9 5,8 S 6+14 9 15
13 18 4 - - - 3,9 22,8 6,2 1.4+15 9 -
138 4,23 5 - - - 38,8 41,3 6,5 S 2,+15 10 -
139 10 6 - - - 35 34 6,8 S 5+15 - 20
140 32 - - - 38,3 22 6,5 W 2,+15 8 -
141 39 6 20 - 38 23 6, S 4+15 - -
142 39 9 - - - 36,3 36,1 5, S 5+14 - -
3 10 82 - - - 36,1 36,2 6,5 S 2,+15 - 16
144 32 90 - - - 40,6 29, 6,8 W 5+15 9 -
145 10 92 - - - 40,5 26,6 6,5 S 2,+15 - 25
146 39 93 - - - 40,6 2 6,1 S 1+15 - -
14 39 94 - - - 38,8 30,5 6,1 S 1+15 - -
8 32 94 - - - 36,4 25,4 6 W 9,+14 -
149 22 9 - - - 3,3 36,3 6,2 1,4E+15 9 -
150 18 100 - - - 35 25 ,5 2,2+16 9 -
151 32 105 - - - 40,9 24,2 6,5 W 2,+15 8 -
152 18,22 105 - - - 38,6 23 6,5 2,+15 10 -
153 18, 22, 32, 39 105 - - - 38,9 2 6,8 W 5+15 9 -
154 32 110 - - - 38,2 2 6,8 W 5+15 9 -
155 39 110 - - - 36,3 36,1 6,1 S 1+15 - -
156 12 110 - - - 39,5 33,5 6,5 S 2,+15 - -
15 32, 39 110 - - - 3 26 6,8 S 5+15 9 -
158 10, 12,22,

32, 39

115 12 13 - 35,8 35,1 ,5 S 2,2+16 - -
159 39 115 12 13 - 36 28 6,1 S 1+15 - -
160 10, 32, 39 11 11 10 - 40,4 28 6,6 W 3,+15 9 -
161 10 121 - - - 40,4 29,9 5,8 S 6+14 - 15
162 18 124 - - - 40,8 30 6,5 2,+15 10 -
163 4 125 - - - 39,5 43,9 ,4 S 1.7+16 - -
164 32, 39 12 - - - 40,6 3 6,8 W 5+15 9 -
165 39 128 - - - 3,3 36,8 6,1 S 1+15 - -
166 39 129 - - - 40,4 29,4 6,1 S 1+15 - -
16 10,39 130 - - - 33,3 36 6 S 9,3+14 - 20
168 39 138 - - - 36,3 28 6,1 S 1+15 - -
169 39 138 - - - 40,2 26,4 6,1 S 1+15 -
10 10, 22, 32, 38 142 - - - 36,6 28 W ,6+15 10 -
11 39 144 - - - 36,6 29,1 6,1 S 1+15 - -
12 12, 39 155 - - - 40,1 2,5 6,5 S 2,+15 - -
13 32, 39 155 - - - 36,3 28 ,6 W 2,+16 10 -

bgcolor=white>2.7+15
1 2 3 4 5 6 7 8 9 10 11 12 | 13
174 18,22 160 1 6 39,2 26,5 7 7.6+15 10
175 10 161 - - - 34,7 40,7 6 S 9,+14 - 18
176 32, 39 165 - - - 38,4 26,9 6,5 W 2.7+15 8 -
177 39 170 - - - 40,8 29,9 6,1 S 1+15 - -
178 10, 32, 39 170 5 3 - 40,1 28 7 S 7,6+15 9 -
179 18 175 - - - 37,6 21,7 6,2 1.4+15 9 -
180 18,32 177 - - - 38,4 27,1 7,6 W 2/7+16 10 -
181 12, 18, 22 181 4 3 - 40,5 31 6,2 S 1.4+15 9 -
182 39 212 - - - 41 29 5,7 S 5+14 - -
183 39 220 - - - 36,3 36,1 6,1 S 1+15 - -
184 39 233 - - - 33,5 36,3 5,7 S 5+14 - -
185 36, 37 233 - - - 34,5 38,3 7 S 7.6+15 10 -
186 12, 22 236 - - - 40,9 36 6,5 S 8-9 -
187 18,22 241 - - - 37,8 28,8 6,7 4+15 9 -
188 10 242 - - - 37,3 36,5 7,5 S 2.2+16 - 45
189 32, 39 245 - - - 36,3 36,1 7,6 W 2.7+16 10 -
190 32, 39 251 7 9 - 35,6 25 7,5 W 2,2+16 9 61
191 32 253 - - - 39,1 27,2 6,8 W 5+15 9 -
192 22, 32, 39 268 - - - 40,6 29,8 6,6 W 3,+15 8 -
193 39 272 - - - 36,3 36,1 6,1 S 1+15 - -
194 10, 23 275 - - - 45,2 36,5 6,4 S 2,2+15 - 20
195 39 290 5 14 - 37,1 35,8 6,1 S 1+15 - -
196 22, 36, 37 303 - - - 34,1 35,6 7,4 1,7+16 10 -
197 10, 39 306 - - - 33,8 34,3 7,2 S 1.2+16 - -
198 32,39 325 - - - 41 29 6,8 W 5+15 9 -
199 10 330 - - - 35 34 6,3 S 1,7E+15 - 14
200 22 332 - - - 35,2 33,8 7 7,6+15 9 -
201 32 334 - - - 41,4 19,6 6,3 W 1,7+15 8 -
202 10, 32, 39 334 - - - 36,5 36,1 6,8 W 5+15 9 -
203 18,22 3341 6 - - 36,8 27,3 6,7 4+15 9 -
204 39 335 - - - 40,6 37 6,1 S 1+15 - -
205 39 336 - - - 36 28 6,1 S 1+15 - -
206 10 337 - - - 35 33 7 S 7.6+15 - 20
207 4 341 - - - 38 38,3 6 S 9.3+14 >8 -
208 22, 39 341 - - - 36,3 36,1 6,1 S 1+15 - -
209 22, 39 342 - - - 34,8 32,4 6,7 S 4+15 - -
210 39 343 - - - 35,2 33,3 6,1 S 1+15 - -
211 22, 39 343 - - - 40,6 37 6,1 S 1+15 -
212 18, 22, 32, 39 344 - - - 35,9 28 6,8 W 5+15 9-10 -
213 39 345 - - - 36,3 36,1 5,7 S 5+14 - -
214 10, 39 345 - - - 40,6 36,9 5,8 S 6+14 - 15
215 18, 32 345 - - - 41,2 19,6 6,2 W 1,4+15 8 9 -
216 10, 22 348 - - - 34,2 35,7 6,5 S 2,7+15 - 23
217 39 349 - - - 33,8 35,5 6,7 S 4+15 - -
218 39 350 10 - - 40,8 30 6,1 S 1+15 - -
219 39 356 - - - 41 29 5,7 S 5+14 - -
220 32 358 - - - 40 20 6,3 W 1.7+15 9 -
221 10, 22, 32, 30,

39

358 - - 40,8 29,9 6,8 W 5+15 9 -
222 18,32 358 - - - 40,6 29,6 7,6 W 2.7+16 9 -
£23 10,18, 26 362 - - - 31,3 35,6 6,7 S 4+15 - 23
224 22, 32, 39 362 - - - 40,6 29,9 6,8 W 5+15 9 -

bgcolor=white>S
1 2 3 4 5 6 8 9 10 11 12 13
225 10, 22,38,39 363 41 29 5,8 S 6,1+14 15
226 22 363 5 18 - 31, 35,2 ,6+15 10 -
22 10, 18, 22,

32, 39

365 21 - 34, 24 8,3 S 1,2+1 11 150
228 4 368 - - - 39,5 43,9 ,2 S 1,2+16 10 -
229 12, 18, 22,

32, 39

368 10 11 - 40,5 29, 6,8 W 5+15 8-9 -
230 22 30 - - - 34,6 32,4 ,6+15 9 -
231 18 35 - - - 3,9 22,8 ,6+15 9
232 18 35 - - - 3, 29 ,6+15 9 -
233 39 36 - - - 41 29 6,1 S 1+15 - -
234 39 382 - - - 41 29 6,1 S 1,1+15 - -
235 10 394 - - - 35,8 36,3 ,1 S 9,3+15 - -
236 22, 39 394 9

10

- 41 29 6,1 S 1+15 - 32
23 39 396 - - - 36,3 36,1 6,1 S 1+15 - -
238 22, 39 396 - - - 41 29 6,1 S 1+15 - -
239 39 398 - - - 41 29 5, S 5+14 - -
240 18 400 - - - 3,9 22,8 6, 4+15 9-10 -
241 8, 39 400 - - - 42,9 41 6,1 S 1+15 8 -
242 22,39 402 2 - - 41 29 6,1 S 1+15 - 10
243 22 40 4 1 - 41 29 5, 5+14 -8 -
244 22, 39 408 5 - 41 29 5, S 5+14 - -
245 39 412 - - - 41 29 5, S 5+14 - -
246 18,22 41 - - - 3,1 29,3 ,6+15 10 -
24 10, 22 419 - - - 33 35,5 6,1 S 1+15 - -
248 39 426 - - - 38,8 22,8 ,4 S 1,+16 - 20
249 10, 32, 38,39 42 - - - 41 29 6,8 W 5+15 9 -
250 2,3, 8, 10,

23,26

42 - - - 40,5 46,5 6,5 S 2,+15
251 18 430 - - - 35 25 6,1 1+15 9 15
252 39 430 - - - 41 29 6,1 S 1+15 - -
253 39 434 - - - 35 36,2 6,1 S 1+15 - -
254 39 434 - - - 41 29 5, 5+14 - -
255 32, 39 438 - - - 41,1 28,8 6,8 W 5+15 9 -
256 39 438 - - - 35,4 25 6,1 S 1+15 - -
25 32 439 - - - 35, 25,2 ,6 W 2,+16 10 -
258 19 440 200 - - - 29,5 51,3 6,3 S 1,+15 - 61
259 10, 39 440 10 26 - 41 29 5,8 S 6+14 - -
260 32 444 - - - 40,8 29,8 6, W 4+15 8 15
261 22, 39 446 01 26 - 40, 29,3 6,1 S 1+15 - -
262 10, 18, 32,

38, 39

44 12 08 - 40,8 29,6 ,5 W 2,2+16 9-10 -
263 32, 39 448 11 06 - 34,8 24,8 ,2 W 1.2+16 9 -
264 32, 39 450 01 26 - 40,4 28,4 W ,6+15 9 -
265 22 453 3 - - - 34,4 35,8 6, S 4+15 - -
266 39 453 - - - 42,5 43,5 5, S 5+14 - -
26 39 454 09 - - 34 36 5, S 5+14 - -
268 10,22, 32,39 458 09 14 - 36,2 36,4 , S ,+16 - 20
269 10, 12, 22, 460 - - - 40,4 2,9 6,6 W 3,+15 8 -

32,38

1 2 3 4 5 6 7 8 9 10 11 12 13
270 4,10, 23 461 39,2 42,6 7 S 7.6+15 8
271 10,39 464 - - - 40,4 27,8 7,3 S 1,4+16 - 16
272 39 470 - - - 41 29 5,7 S 5+14 - -
273 22 476 - - - 36,4 28,2 6,7 4+15 - -
274 22, 32 477 - - - 40,9 28,8 7 W 7,6+15 10 -
275 18, 32 477 - - - 36,3 28,3 6,7 W 4+15 8-9 -
276 39 477 - - - 35,3 35,9 5,7 S 5+14 - -
277 18,32 478 - - - 40,8 29 6,8 W 5+15 9 -
278 10, 38, 39 478 09 25 - 40,9 28,8 7 S 7.6+15 - 16
279 32 478 - - - 40,2 26,3 6,8 W 5+15 9 -
280 8 480 09 - - 44,4 33,3 6,1 S 1,1+15 8 15
281 10, 32, 39 488 09 26 - 40,8 29,4 7 W 7,6+15 10 -
282 18,22 494 - - - 37,7 29 7,4 1.7+16 10 -
283 10, 39 494 - - - 34,3 35,8 6,6 S .+15 - 35
284 4,10,12,22,

23,39

499 - - - 38,1 38,6 7,5 S 2.2+16 10
285 18 500 - - - 37,6 21,7 6,7 4+15 9 -
286 10 500 - - - 36,3 36,2 7,3 S 1,4+16 - 35
287 39 500 - - - 40,8 29,9 6,1 S 1.E-+15 - -
288 10 500 - - - 42,7 76,5 6,7 S 4+15 - 20
289 10,22,39 502 08 21 - 33 34,8 7 S 7.6+15 - 28
290 39 505 - - - 36,3 28 6,1 S 1,1+15 - -
291 39 506 - - -_ 40,6 36,9 5,7 S 5+14 - -
292 32, 39 506 - - - 36,3 36,1 6,8 S 5+15 9 -
293 32 506 - - - 41,1 19,6 6,3 W. 1,7+15 8 -
294 18,22, 32, 39 515 - - - 36 28,3 6,7 W 4+15 9 -
295 39 517 - - - 37,2 35,9 6,1 S 1+15 - -
296 39 517 - - - 41 29 5,7 S 5+14 - -
297 12,18, 22, 32 518 - - - 41,7 21 6,8 W 5+15 10 -
298 39 518 05 - - 36,9 36,6 6,1 S 1.1+15 - -
299 10 521 - - - 37 36,5 7,4 S 1,7E+16 - 40
300 18,32 522 - - - 41,1 19,6 6,4 W 2,2+15 8-9 -
301 18,22, 39 522 - - - 38 23 6,1 S 1+15 - -
302 32 524 - - - 37,9 22,8 6,6 W 3,+15 9 -
303 39 524 - - - 37,2 35,9 6,1 S 1+15 - -
304 39 525 05 20 - 33,5 35,4 6,1 S 1+15 - -
305 39 526 - - - 41 29 5,7 S 5+14 - -
306 10, 22, 32, 39 526 05 29 - 36,3 36,1 6,8 S 5+15 9 -
307 39 527 - - - 41 29 5,7 S 5+14 - -
308 39 528 - - - 36,6 29,1 5,7 S 5+14 - -
309 10, 39 528 - - - 40,7 35,9 5,8 S 6+14 15
310 10, 22, 26,

32, 36, 37

529 11 29 - 36,8 36,3 7 S 7.6+15 10 -
311 39 529 - - - 33,8 35,6 5,7 S 5+14 - -
312 22,39 532 - - - 35 36,8 5,7 S 5+14 - -
313 22,39 533 11 - - 41 29 5,7 S 5+14 - -
314 10 535 01 05 - 36,2 36,3 6,3 S 1.7+15 - 15
315 22, 32,39 541 08 16 - 41,1 28,9 6,7 S 4+15 8 -
316 18,22 543 - - - 37,9 22,8 7 7.6+15 9 -
317 18, 22,32, 39 543 09 06 - 40,4 27,8 7,2 S 1.2+16 9 -
318 18,22, 39 546 04 08 - 41 29 5,7 S 5+14 9 -
319 10, 39 550 - - - 40,9 28,5 7,2 S 1.2+16 - 25

19. .., ..

577

bgcolor=white>12, 29, 32
1 2 3 4 5 6 1 8 9 10 11 12 13
320 10, 22, 39 551 0 09 34 35,5 i,3 S 1,4+16 28
321 551 - - - 38,9 22,i W ,6+15 10 -
322 18, 32,33, 39 551 0 - - 38,4 22,4 i,2 W 1,2+16 10 -
323 39 553 - - - 36,3 36,1 5,i S 5+14 -
324 32, 39 553 08 15 - 40,8 29,1 i,6 S 2,+16 10 -
325 39 554 - - - 33,8 35,6 6,i S 4+15 - -
326 22 554 08 15 - 40,4 30 6,4 2,2+15 - -
32 10, 12, 38 554 08 16 - 41 29 5,8 S 6+14 - 15
328 32 554 - - - 36,8 2i,4 W ,6+15 10 -
329 26, 32 555 08 15 - 41 29,5 i,5 W 2,2+16 9 -
330 18 556 - - - 36,9 26,9 6,2 1,4+15 9-10 -
331 39 55 - - - 36,3 36,1 5,i S 5+14 - -
332 39 55 04 02 - 41 29 6,1 S 1+15 - -
333 39 55 10 16 - 41 29 6,1 S 1+15 - -
334 10, 22, 32,

38, 39

55 12 14 40,9 28,8 W ,6+15 9 -
335 18 560 - - - 35 25 6,1 1+15 9 -
336 -39 561 - - - 3i,2 35,9 6,1 S 1+15 - -
33 10, 39 565 - - - 34,9 36,4 S ,6+15 - 55
338 10, 38 56 - - - 45,6 15,3 6 S 9,3+14 - 16
339 22 50 - - - 36,3 36,3 6 9,3+14 -
340 22, 39 580 - - - 36,3 36,1 5, S 5+14 - -
341 32 580 - - - 38 22,8 6,3 S 1,+15 9 -
342 22, 39 583 05 10 - 41 29 5, S 5+14 - -
343 22, 32, 39 58 09 30 - 36,3 36,1 6,8 W 5+15 9 -
'344 10, 32 59i - - - 41 23,9 6,8 W 5+15 9 -
345 18, 36, 3 599 - - - 31,3 35,i 6,2 S 1,4+15 9 -
346 19 600 100 - - - 29,5 51,3 6,5 S 2,iE+15 - -
34 18 601 - - - 3i,i 29 6,1 S 1+15 9 -
348 39 601 04 20 - 41 29 5, S 5+14 - -
349 2,3,4, 11,

13,23

602 04 - - 38,i 41,6 6 S 9,+14 8 -
350 1O,i'39 611 - - - 41 29 5,8 S 6+14 - 15
351 32 620 - - - 40,6 23,3 6,6 W 3,+15 8 -
352 18 620 - - - 35 25 6,1 1+15 9 -
353 10 628 06 - - 32,5 35,5 6,6 S 3,+15 - 35
354 10,36,3 634 - - - 36,2 3i,2 6,3 S 1,+15 8 -
355 22 634 09 - - 31,i 35,2 6,2 1.4+15 - -
356 39 639 - - - 36,3 36,1 5, S 5+14 - -
35 8, 10 650 - - - 42,6 4i,i 6,1 S 1+15 - 20
358 10, 22 658 06 - - 32,5 35,5 6,6 S ,+15 - 28
359 10, 32, 38, 39 66 - - 40,6 23,5 6,6 W ,+15 8 -
360 18 60 - - - 35 25 6,1 1+15 9 -
361 10,23 68 - - - 38,2 39,5 ,8 S 4+16 10 26
362 32, 39 688 - - - 38,4 2i 6,5 W 2,7E+15 9 -
363 32 00 - - - 40,8 23,2 6,6 W ,+15 -
364 31 10 - - - 31,i 35,2 6,1 1+15 - -
365 10,22 13 02 28 - 35,i 36,3 ,4 S 1,+16 - 30
366 36, 3 13 03 20 - 36,8 36,3 6,1 1+15 9 -
36 39 15 - - - 36,5 3i,9 6, S 4+15 - -
368 32, 39 15 - - - 40,4 29,i 6,8 W 5+15 9 -

1 2 3 4 5 6 7 8 9 10 11 12 13

bgcolor=white>1,2+16
369

370

371

372

36, 37 -

39

39

39

716

716

718

726

- - - 39,8

36,3

37,2

40

64,4

36,1

38,8

46

6,5

5,7

6,1

6,1

S

S

S

2.7+15 5+14 1.1+15 1.1+15 9 -
373 10,39 732 - - - 41 29 5,8 S 6.1+14 - 15
374 1113, 30 734 - - - 31 60,5 6,6 S .+15 - -
375 2,3,4,5,10,11,

13,23,26,30

735 07 21 39,5 45,8 7 S 7.6+15 10
376 10,18,22,32,

38,39

740 10 26 41 28,3 7,4 W 1.7+16 9-10
377 39 741 - - - 39,5 43,5 5,7 S 5+14 - -
378 23 742 - - - 42,4 44,9 6,4 S 2.2+15 8,5 18
379 10,11,13,20, 30 743

- - - 35,3 52,3 7,2 S 12+16 9
380 10,26. 746 01 18 - 32 35,5 7,3 S 1.4+16 - 20
381 10, 22,^1- ' 748 - - - 32,4 35,8 6,5 S 2.7+15 - 16
382 10 749 01 25 - 36,5 43,5 7 S 7.6+15 - 18
383 10,31 756 05 03 - 32 35,5 6,9 S 6,1+15 - 25
384 36,37 757 - - - 37 35,6 5,7 S 5+14 7 -
385 8, 10,11,13,

26, 30

763 - - - 33,3 59,3 7,6 S 2,7+16
386 31 765 - - - 31,7 35,2 6,1 1.1+15 - -
387 10,39 775 - - - 36,5 36,7 6,7 S 4+15 - 30
388 39 789 02 08 - 41 29 6,1 S 1.1+15 - -
389 10,39 791 - - - 36,2 36,7 6,8 S 5+15 - 30
390 36, 37 796 - - - 31,2 29,9 6 S 9,+14 8 -
391 22, 32, 39, 796 04 07 - 34,8 24,6 7,2 W 8 61
392 22, 39 796 05 04 - 41 29 6,1 S 1.1+15 - -
393 10,23 800 - - - 35,7 38,7 6,4 S 2.2+15 9 12
394 4,23,38 802 - - - 39,7 39,5 7 S 7,6+15 9 -
395 36, 37 803 - - - 37 35,6 6 S 9,+14 8 -
396 1113,30 805 12 02 - 29,5 60,5 7 S 7.6+15 - -
397 10, 32 815 - - - 41 28 6,6 W .+15 9 -
398 8, 10,11 13,

20,26,30,36,

37

818 05 15 36,8 66,2 7,5 S 2.2+16 8 50
399 10,22, 36, 37, 39 835 36,8 36,3 6,1 S 1,lE+15 14
400 4 840 06 - - 40,3 41,5 6,5 S 2,7+15 9 -
401 8,10,11,13,

23,30

840 07 - - 35,2 60,4 6,5 S 2.7E+15
402 10, , 13,20,

30, 36, 37

840 - - - 31,3 48,7 6,5 S 2.7E+15 8
403 10 844 09 18 - 34,4 36,3 7,7 S .+16 - 20
404 22, 36, 37,39 847 11 24 - 34 36 6,9 6.1+15 9 -
405 10,23 847 - - - 35,5 43,5 7,3 S 1.4+16 9 16
406 2, 3,4,5,8,

26, 39

851 85 - - 40 44,6 6,1 S 1.1+15 8-9
407 8, 10 853 - - - 36,2 58,8 5,8 S 6.1+14 - 10
408 10,36,37 854 - - - 32,8 35,5 7 S 7.6+15 10-11 -
409 39 854 - - - 40 45 6,1 S 11+15 - -

410 11,13,20,23, 855 85 - - 35,6 51,5 i,1 S 9,3+15 9 -
30
411 39 856 - - - 38,3 22,5 5,i S 5+14 - -
412 8, 10,11,12,

13,20,23,26,

856 12 22 - 36,2 54,1 i,9 S 5+16 9 -
30, 36, 3i
413 2 3 4 10,11,

13,20,23, 30

858 - - - 38,1 46,3 6 S 9,3+14 > -
414 2,3,4, 8,26, 858 - - - 40 44,6 6,1 S 1+15 >9
39
415 10,22, 32, 36, 859 04 08 - 36,8 36,3 8 S 6+16 10-11 30
37,39
416 23 860 - - - 35,5 52,5 6,2 S 1.4+15 8,5 15
41i 10 860 05 23 - 33,5 44,5 6,5 S 2,+15 - 20
418 22, 39 860 05 23 - 41 29 5,i S 5+14 - -
419 2, 3,4, 8,11,

13,22,26, 32,

863 02 40 44,6 6,5 S 2,+15 8 -
39
420 39 865 05 16 - 35 25 6,i S 4+15 - -
421 32, 39 865 05 16 - 41 29 6,8 W 5+15 9 -
422 32, 39 86i - - - 36,3 36,1 6,8 W 5+15 9 -
423 10, 38, 39 86i 01 09 - 40,8 29,3 6,1 S 1+15 - 14
424 2, 3,4, 32, 39 869 - - - 40 44,6 6,i S 4+15 >9 -
426 10,11,13,20, 8i2 06 22 - 33,1 4i,2 6,8 S 5+15 >8 -
30, 36, 3i
42i 10, 1113,20, 84 11 12 - 3i,2 55,3 6 S 9,3+14 >
23,30
428 10 881 - - - 33 35 6,5 S 2,+15 - 15
429 22, 36, 3i 885 11 - - 30,1 31,3 6,4 S 2,2+15 9-10 -
430 2,3,4,5,8,10, 893 - - - 40 44,6 S ,6+15 10 -
11, 13,20,22,

23, 30,38,39

431 1,2, 3, 8, 10,

23, 26,36, 3i

894 - 3i,i 4i,5 i,4 S 1,+16 10 28
432 4 895 - - - 39,4 46,2 6,5 S 2,iE+15 9 -
433 32 896 02 - - 40,5 22,2 6 W 9,3+14 8 -
434 10, 38,39 896 03 - - 41 22,i 6,1 S 1+15 - 14
435 10,39 896 09 04 41 22,i 6,1 S 1+15 - 14
436 10,38 901 03 31 ; 10 43,4 28,i i,2 S 1.2+16 - 14
43i 10, 36,3i 902 06 - - 33,3 44,4 6,5 S 2,+15 9 -
438 2,3,4, 5, 8, 906 - - - 39,8 45,2 S ,6+15 10 -

10,11, 13,20,

22,23, 30

439 39 913 - - - 36 25 5, S 5+14 - -
440 10 914 04 - - 40 64 6,1 S 1+15 - 13
441 39 915 - - - 41 29 5, S 5+14 - -
442 4,38 915 - - - 39,4 46,2 6,5 S 2,+15 8 -
443 8 918 - - - 42,1 48,2 6,1 0 1+15 8 -
444 12 926 - - - 38,5 2,5 6,5 S 2JE+15 - -
445 18,22, 32 926 - 41 2,5 6,6 W 3,+15 8-9 -
446 10 940 08 20 - 38 58,3 ,1 S 9,+15 - -

bgcolor=white>5+15
447 8,10,26 942 06 - - 39,5 64 6,7 S 4+15 - -
448 8,10,11 13,

20,23,26

943 08 - - 37,6 57 7,4 S 1,7E+16 >9 20
449 22,39 945 - - - 41 29 5,7 S 5+14 - -
450 22, 36, 37 950 07 26 - 30,1 31,3 6,7 S 4+15 8-9 -
451 22, 36, 37 951 09 15 - 31,2 29,9 6 9.3+14 8-9 18
452 10, 36, 37 951 09 - - 36,2 37,2 6,8 S 8-9 20
453 22, 36,37 956 01 01 - 31,2 29,9 6 S 9.3+14 8 -
454 3 6,10, 11,

13, 20,23,

26, 30,36, 37

958 02 23 35,8 51,4 7,4 S 1.7+16 10-11
455 10, 11, 13,

20, 30,36,37

958 04 - - 34,5 45,8 6,4 S 2.2+15 9 -
456 39 960 - - - 41 29 6,1 S 1+15 - -
457 39 963 07 22 - 36,6 37 6,1 S 1.1+15 - -
458 12, 18,22,41 967 09 - - 40,8 32 7,4 S 1.7+16 10
459 39 968 09 02 - 41 29 6,1 S 1+15 - -
460 32, 39 968 09 03 2; 00 41,2 34,8 6,8 W 5+15 9 -
461 32 968 12 22 - 39,3 20,2 6 W 9.3+14 7 -
462 10, 22,39 972 10 12 - 36 36,3 6,8 S 5+15 - -
463 10, 36,37 974 - - - 33,3 36,3 6,1 S 1+15 8-9 -
464 10,38 975 10 26 - 41 29 5,8 S 6+14 - 15
465 39 985 09 23 - 40,4 28,9 6,1 S 1+15 - -
466 10 986 05 13 - 36,3 43,3 6,5 S 2,7+15 - 14
467 24, 32, 39 986 10 26 - 40,8 29,2 7,5 W 2,2+16 9 -
468 10,23, 36,37 986 11 - - 36,4 43,1 6,6 S 3,+15 8-9 -
469 10,22, 36, 991 04 05 - 33,5 36,3 7,1 S 9.3+15 9 22
37,39
470 2, 3 4,10,

12,23, 39,41

995 12 31 - 36,6 40 7,5 S 2.2+16 10
471 32 996 - - - 38,3 22,4 6,8 W 5+15 9 -
472 18 1000 - - - 37,8 23,2 6,1 S 1+15 9 -
473 10 1002 11 10 - 36,5 36,5 6,8 S 5+15 - 18
474 4, 38, 39 1004 - - - 38,1 38,3 7 S 7.6+15 9 -
475 10, 1113,

20, 30,36, 37

1008 04 27 - 34,6 47,5 7 S 7.6+15 9
476 , 13,20, 1008 - - - 27,7 52,4 6,5 S 2,7+15 8 -
30,36,37
477 10, 32, 39 1010 01 08 - 40,6 27 7,3 S 1.4+16 10 -
478 10,38, 39 1010 03 09 - 41 29 5,8 S 6+14 - 15
479 2, 3,4,23,39 1011 - - - 39,7 39,5 7 S 7.6+15 10 -
480 39 1012 - - - 39,1 42,5 5,7 S 5+14 - -
481 4 1016 - - - 40,7 43,8 6 S 9,+14 8 -
482 4,38 1022 10 03 - 40,5 43,6 6 S 9,+14 8 -
483 39 1029 01 20 - 33,5 36,3 6,1 S 1+15 - -
484 10, 39 1031 08 13 - 41 29 5,8 S 6+14 - 15
485 39 1033 03 06 - 41 29 5,7 S 5+14 - -
486 12, 31 1033 12 05 - 32,5 35,5 7,4 S 1,7+16 - -
487 10 1034 - - - 41 29 5,8 S 6+14 - 15
488 10, 36,37 1034 01 04 - 32,8 35,5 7 S 7.6+15 10-11 -
489 12,41 1035 05 - - 40,8 33 6,5 S 2.7+15 - -
490 4, 38 1036 - - - 40,5 43,6 6,1 S 1+15 8-9 -

1 2 3 4 5 6 8 9 10 11 12 13
491 39 103 12 18 4; 00 3i,1 38,8 5,i S 5+14
492 32, 39 1038 11 02 - 41 28,6 6,6 S ,+15 -
493 32, 39 1039 02 02 - 38,4 2i,3 6,8 S 5+15 9 -
494 39 1040 - - - 38,3 46,4 6,1 S 1,1+15 - 20
495 39 1041 06 10 - 41 29 6,1 S 1+15 - -
496 10, 39 1042 08 21 - 34,2 3i,i i,2 S 1,2+16 - -
49 2, 3,4,10,11, 1042 11 04 19; 30 38,1 46,3 i,6 S 2,+16 10-11 -

13,20,23,26,

30,36, 3

bgcolor=white>12,14
498

499

36, 3i

2, 3,4, 12, 23,

32, 39

1042

1046

0i 08 - 34,6

39,i

38,3

39,5

6 i,i S

S

9,3+14

3,+16

8-9

10-11

-
500 36, 3i 1046 - - - 3i,9 40,2 6 S 9,3+1 8-9 -
501 36,3i 104i - - - 31,9 34,9 6,5 S 2,+15 9
502 12, 36, 3i, 39,

41

1050 08 05 - 41 33,5 i,4 S 1,+16 - -
503 8,10,11,13,

20,23,26, 30

1052 06 02 36,2 5i,8 S ,6+15 9
504 1113,20, 30,

36, 3i

1052 - - - 36,6 50,3 6,8 S 5+15 >8 -
505 10,39 1053 - - - 36,2 36,2 6,2 S 1,4E+L5 - 12
506 10 1053 09 23 - 34,5 45,5 6,4 S 2,2+15 - 16
50i 39 1056 - - - 38,4 2i,2 6,1 S 1+15 - -
508 10, 11, 13,23,

30,36,3i, 39

1058 12 08 18; 00 35,8 43,6 i,2 S 1.2+16 9 25
509 31 1060 - - - 31,i 35,2 6,5 S 2,7E+15 - -
510 10, 39 1063 0 30 - 34,4 36,2 6,i S 4+15 - 40
511 10,32,38, 39 1063 09 23 - 40,9 28,3 i,2 W 1.2+16 8 -
512 4, 38 1064 - - - 40,5 43,6 S ,6+15 10 -
513 32 1064 09 23 - 40,4 28,9 6,8 W 5+15 9 -
514 10,11,13, 30 1066 05 - - 33,9 59,2 6,5 S 2,+15 - -
515 26 106i 04 20 - 29,3 34,6 6,5 S 2,+15 - -
516 39 1068 - - - 39,8 39,8 5,i S 5+14 - -
51i 10 1068 03 18 - 32 34,3 S ,6+15 - 16
518 1068 03 18 - 28,5 36,i i,4 S 1,iE+16 - -
519 11, 13,36, 3i 102 01 20 - 33,3 44,4 6 S 9,+14 - -
520 39 10i2 - - - 36,4 36,1 6,1 S Ul^+^15 - -
521 39 105 - - - 40,6 35 6,1 S 1+15 - -
522 10, 38, 39 1082 12 06 - 41 29 5,8 S 6+14 - 15
524 39 1086 - - - 41 29 5,i S 5+14 - -
525 11,13,20,30 108i 11 - - 34,4 48,1 5,9 S ,6+14 > -
526 32 108i 12 06 - 41 28,8 6,5 W 2,+15 8 -
52i 2, 3,4, 8,10, 1088 08 16 - 41,4 43,4 6 S 9,3+14 9 -

11,13,20,23,

26, 32, 39

528 10, 39 1089 - - - 34,4 38,3 6,2 S 1,4+15 - 12
529 8,10 1091 - - - 45, 26,6 6,4 S 2,2+15 - 150
530 10, 36, 3, 39 1091 09 1 - 35,9 36,3 ,4 S 1/7+16 - 30
531 10 1100 - - - 43,1 42,4 ,1 S 9,3+15 - 1
532 10 1100 - - - 43,4 41 ,2 S 1,2+16 - 15
533 8,10,23,26 1101 - - - 36 59 6,5 S 2,+15 9,5 10

1 2 3 4 5 6 7 8 9 10 11 12 13
534 8, 10,11, 13,

26

1102 02 28 - 34,5 62,2 6,1 S 1+15 - 14
535 4, 23, 38 1104 03 12 - 38,5 38,3 7,2 S 1,2+16 10 -
536 2, 3, 5, 8, 39 1104 - - - 40,6 43,1 6,1 S 1+15 - 25
537 8, 10 1107 02 12 3; 00 45,7 26,6 6,9 S 6+15 - 150
538 10,11,13,

20, 30

1107 09 - - 34,6 47,5 6,5 S 2,7+15 8 11
539 39 1109 - - - 36,5 37,9 6,1 S 1+15 - -
540 2, 3, 10,39 1111 - - - 38,5 43,4 6,3 S 1JE+15 9 15
541 10,12,39 1114 08 10 - 37,5 38 8 S 6+16 - 30
542 39 1114 29 - 37,6 36,9 6,1 S 1+15 - -
543 10, 11, 13,

36, 37

1118 04 03 - 33,5 44,5 6,8 S 5+15 24
544 10,11,13,

20,23,26,

30, 36,37

1119 12 10 18; 00 36,4 50 6,5 S 2,7+15 9-10
545 10,23 1122 - - - 40,3 46,3 6,1 S 1+15 7,5 24
546 36, 37 1122 - - - 37,5 47,5 5,7 S 5+14 8 -
547 36, 37 1122 - - - 24,5 39,6 5,7 S 5+14 8 -
548 8 10 1122 10 - - 45,7 26,6 6,1 S 1+15 - 150
549 8 10 1126 08 08 - 45,7 26,6 6,4 S 2,2+15 - 150
550 39 1127 - - 33,2 35,2 6,7 S 4+15 - -
551 10, 11 13,

20, 23, 30

1127 - - - 36,4 53,5 6,8 S 5+15 >8 14
552 10, 11, 13,

30, 36,37

02 27 - 33,8 45,5 7 S 7.6+15 7 27
553 2, 3 4,5,8,

10, 23, 39

1131 11 28 40,5 43,6 6 S 9.3+14 8 16
554 36,37 1135 03 - - 33,3 44,4 5,7 S 5+14 7 -
555 10, 11, 13,

23,30

1135 07 25 - 36,1 45,9 6,3 S 1.7+15 7,5 28
556 10, 11, 13,

23,30

1135 08 13 36,1 45,9 6,4 S 2,2+15 30
557 10, 23 1136 - - - 36 43,5 7 S 7,6+15 9 20
558 10, 23 1137 09 19 - 37 38 7,4 S 1.7+16 10 18
559 38 1138 - - - 39,4 46,2 6,6 S .+15 - -
560 39 1138 09 08 - 36,3 37,2 6,1 S 1+15 - -
561 2, 3,4, 5, 8,

10.11, 13,

23,39

1139 09 30 40,3 46,2 7,5 S 2,2+16 10 23
562 26, 32, 36,

37, 39

1139 10 - - 36,2 37,2 6,8 S 5+15 10-11 15
563 39 1140 - - - 35,9 39 6,1 S 1+15 - -
564 39 1147 - - - 38,5 22,5 6,1 S 1+15 - -
565 10 1149 - - - 34 45,5 7,4 S 1.7+16 - 25
566 10 1149 - - - 35,9 36,4 6,6 S 3,+15 - 30
567 10, 11, 13,

20, 30, 36, 37

1150 04 01 - 34,5 45,8 5,9 S 7,6+14 >7
568 39 1151 - - - 40,6 43,1 6,1 S 1+15 - -
569 36, 37 1151 09 28 - 32,6 36,7 6,2 S 1,4+15 8 12
570 10, 39 1152 03 22 - 32,6 36,7 6 S 9.3+14 - 12

bgcolor=white>9
51 39 1155 - - - 34,4 35,8 6,1 S 1+15 - -
5i2 36, 3 1156 10 05 - 35,2 36, S ,6+15 9-10 -
53 10 1156 05 18 - 36,5 36,6 ,3 S 1.4+16 - 30
5i4 10, 39 115 0 15 - 35,4 36,5 6,1 S 1+15 - 30
55 10, 12, 39 115 08 12 - 35,2 36,3 ,2 S 1,2+16 - 20
5i6 26 1160 - - - 32 35,5 6,1 S 1,1+15 - -
5 2,3,4, 39 1161 - - - 39, 39,5 5, S 5+14 >8 -
58 2,3,4, 10 1166 - - - 39, 39,5 5, S 5+14 8 -
59 2, 3 4,10, 1169 - - - 39, 39,5 6 S 9,+14 >9 -
23,39
580 8 10 110 04 01 - 45, 26,6 S ,6+15 8 150
581 12, 36, 3, 39 110 06 30 - 36,2 3,2 S 6+15 9-10 -
582 10 110 0 1 - 35 36,4 , S ,+16 - 40
583 8,10,26 115 - - - 3i,5 65,5 ,1 S 9,+15 0-10 15
584 10,11, 13,

20,23, 30,

11 05 35,9 50,8 ,2 S 1,2+16 -
36, 3
585 10, 36, 3 11 - - - 33,5 44,3 6 S 9,+14 8 10
586 10, 11, 13,

20,23, 30,

119 04 29 36,5 44,2 ,1 S 9,3+15 10 11 16
36, 3
58 10, 26 1182 - - - 32, 36, 6, S 4+15 - 30
588 10, 39 1183 - - - 36 36,3 6,3 S 1,+15 - 12
589 4, 38 118 - - - 40, 45 6,1 S 1+15 8-9 -
590 39 1190 - - - 3,2 33,2 6,1 S 1,1+15 - -
591 39 1190 09 - - 36,3 36,1 6,1 S 1,1+15 - -
592 8, 23 1192 0 - - 40, 48,6 6,1 S 1+15 9 10
593 8, 10 1196 02 13 ; 00 45, 26,6 S ,6+15 8 150
594 10, 36, 31,39 1201 06 02 - 34 36,2 8 S 6,1+16 10-11 40
595 10, 12, 26,

36,3, 39

1202 05 20 34 36 ,5 S 2,2+16 8
596 39 1204 - - - 36,2 3,1 6,1 S 1+15 - -
59 39 1205 - - - 33, 35,5 6,1 S 1+15 - 30
598 10 1208 - - - 36 58,8 6,2 S 1,4+15 - -
599 10,23, 32, 1208 - - - 38, 42,5 6, S 4+15 9-10 -
36,3
600 , 26 1208 0 16 - 42 60 ,6 S 2,+16 - 10
601 8, 10, 11 13, 1209 - - - 36,4 58, ,6 S 2,+16 10 35
20,23, 30,
36, 3
602 14, 36, 3 1212 05 02 - 29,6 35 6,4 S 2,2+15 8-9 10
603 39 1219 01 11 - 40,6 43,1 6,1 S 1+15 - 15
604 2,3,4, 8,11, 1220 01 11 - 41,2 44,8 6 S 9,3+14 8 -
13
605 36, 3 1220 05 20 - 33,8 36,2 ,6 S 2,+16 9 -
606 10,39 1222 05 - - 34,5 33 6,6 S 3,+15 - -
60 36, 3 1225 03 04 - 36,4 43,1 5, S 5+14 -
608 10, 11, 13,

23,30, 36,3

1226 11 18 6; 00 35,3 46 6,5 S 2/7+15 8-9 15
609 10,23 122 - - - 35,8 44,4 ,6 S 2,+16 9 -
610 39 1229 - - - 40, 46,5 6,1 S 1+15 - 15
611 4, 38 1230 - - - 3 35,3 6,5 S 2,+15 9 35

bgcolor=white>6,1
1 2 3 4 5 6 7 8 9 10 11 12 13
612 8, 10 1230 05 10 7; 00 45,7 26,6 7,1 S 9.3+15 8-9
613 32 1231 03 11 - 40,9 28,9 6,9 W 6.1+15 9 -
614 2,3,5 10,

23,39

1235 10 - - 40,6 46,2 5,7 S 5+14
615 2, 3,4,39 1236 - - - 39,7 39,5 5,7 S 5+14 7 10
616 32 1246 - - - 35,1 24 7 W 7,6+15 8 -
617 2,3,4,39 1246 - - - 38,4 42,3 6 S 9,+14 8 -
618 8 1250 - - - 41,6 47,2 5,7 S 5+14 7-8 -
619 2,3,4 1251 - - - 39,7 39,5 6,1 S 1+15 8-9 15
620 2,3,4 12,

23,39

1254 04 28 - 40,2 38,4 7,5 S 2,2+16 11
621 10 1258 02 07 13; 00 45,7 26,6 6,9 S 6+15 - -
622 23 1260 - - - 43,2 51,6 7,2 S 1,2+16 9,5 150
623 10 1261 - - - 33,7 35,2 6,9 S 6+15 - 20
624 2,3,8,39 1261 - - - 41,4 43,2 6,1 S 1+15 8 20
625 36,37 1262 - - - 30,1 31,3 6,7 S 4+15 9-10 10
626 10, 36, 37 1262 - - - 36,4 43,1 6 S 9.3+14 8 -
627 8,10,26 1267 - - - 36 58,5 5,8 S 6+14 - 10
628 2,3,4 10,

23,32,39

1268 - - - 39,7 39,5 7,1 S 9.3+15 9-10 10
629 10,32,36,

37, 39

1268 - - - 37,4 35,8 6,8 S 5+15 9
630 4,38 1269 05 - - 36,9 36,6 7,3 S 1,4+16 10 -
631 10,11, 13,

20,23,30

1270 10 07 36,3 58,8 7,1 S 9.3+15 9
632 32 1273 - - - 41,1 19,6 6,6 S .+15 9 10
633 2,3 4 11,

13, 20,23,39

1273 01 18 38,1 46,3 6,5 S 2,7+15 >8
634 3,4,10,11,

13,23,36, 37

1275 04 14 38,8 42,6 7 S 7,6+15 10
635 2, 3, 8, 10,

26,32, 39

1275 04 14 - 42,1 44,2 6,7 S 4+15 8-9
636 10 1276 - - - 44,3 23,8 6 S 9.3+14 - 28
637 2, 3,39 1276 - - - 38,9 42,9 6,1 S 1+15 7 13
638 8,10,26 1280 12 1 - 36,1 58,8 5,8 S 6+14 8-9 15
639 2, 3,4,39 1281 - - - 38,8 42,6 7,6 S 2.7+16 10-11 10
640 4,10,11,13,

23,26,32

1283 04 17 41,6 43 6,7 S 4+15 9
641 36,37 1284 - - - 33,5 36,3 7,2 S 1.2+16 9-10 -
642 36,37,39 1287 03 11 - 35,2 36,7 6,1 S 1+15 8-9 24
643 2, 3,4,39 1287 05 06 - 39,7 39,5 6,1 S 1+15 9 -
644 39 1289 - - - 39,8 39,5 5,7 S 5+14 - -
645 4,38,39 1290 - - - 39,7 39,5 S 1+15 8-9 -
646 36, 37 1293 01 - - 31 35,6 6,6 S .+15 8 -
647 10, 38,39 1296 06 01 - 41 29 5,8 S 6+14 - 15
648 12 1296 07 17 - 39,2 27,4 6,5 S 2.7+15 - -
649 10,11, 13,

20, 23, 26, 30

1301 - - - 36,2 53,2 6,7 S 4+15 >8
650 10 1302 08 09 - 33,8 36,1 6,5 S 2.7+15 - 30
651 36, 37 1303 07 30 - 30,1 31,3 6,4 S 2,2+15 9 -
652 32 1303 12 - - 36,3 27,3 8 W 6+16 11 61
653 32, 39 1304 08 08 - 36,5 27,5 7,6 S 2/7+16 10 -

1 2 3 4 5 6 8 9 10 11 12 13
654 2, 3, 8,11,

13, 20, 23,

26, 30

1304 11 0 - 38,1 46,5 6,i S 4+15 >8 -
655 39 1305 - - - 41 29 5,i S 5+14 - -
656 32, 39 1306 - - - 35,5 25,5 6,i S 4+15 - -
65i 10, 39 1308 - - - 39,i 39,5 5,8 S 6+14 - 15
658 2, 3,5,10,23 1308 - - - 39,4 46,2 6,1 S U1^4^15 8 15
659 10, 11 13 1310 - - - 35,6 46,1 6 S 9,3+14 - 10
660 10, 11, 13,30 1316 01 05 - 33,5 49,4 6,2 S 1,4+15 -
661 2,3, 8, 39 1318 - - - 41,8 44,i 5,8 S 6,1+14 8-9 10
662 2,3,4, 5, 8,11,

13,20,23, 39

1319 - - - 39,5 43,9 6,2 S 1.4+15 10-11 -
663 2, 3,5, 11,

13, 30, 39

1319 40,5 43,6 5,9 S ,6+14 8 15
664 39 1320 - - - 40,5 46 5,i S 5+14 - -
665 32, 39 1323 - - - 40,9 29,2 6,5 S 2,+15 8 -
666 8 10 132i - - - 45,i 26,6 S ,6+15 8 150
66i 32 132i 05 12 - 40,1 28,2 6,5 W 2,+15 8 -
668 32, 39 1331 02 12 - 40,9 28,6 6,8 W 5+15 8 -
669 10,11, 12,

13,20,26, 30

1336 10 21 - 34,5 59,9 i,6 S 2,+16 >9 14
60 10 1339 01 13 - 34,6 36,2 6,8 S 5+15 - 30
61 39 1339 0i 20 - 34,5 35,8 6,1 S 1+15 8 -
62 8 1341 - - - 44,3 34,3 6 0 9,+14 -8 20
63 36,3 1341 05 - - 31,2 29,9 6,i S 4+15 8-9 -
64 4 1342 - - - 40,3 41,5 6 S 9,3+14 8 -
65 32 1343 10 18 - 40,8 28,3 i,5 W 2,2+16 10 -
66 4,10,23, 36,

3

1344 - - - 36,5 38 S ,6+15 10 -
6ii 11, 13,20, 30 1344 - - - 32,8 52,3 5,i S 5+14 -
68 10, 32, 38, 39 1344 09 23 - 41 29 i,2 S 1,2+16 9 -
69 39 1346 - - - 41 29 5,i S 5+14 - -
680 8, 10,23, 26 1350 - - - 43 43 6,5 S 2,+15 8 20
681 10, 32, 38, 39 1354 03 01 - 40,4 26,5 i,2 S 1,2+16 10 -
682 32 1354 03 - - 40,i 2i 6,8 W 5+15 9 -
683 2, 3,4,23, 39 1363 - - - 38,i 41,6 6 S 9,3+14 9 -
684 11, 13,30 1364 02 10 - 34,9 61,i 5,8 S 6,1+14 - -
685 10, 32, 39 1366 06 01 - 40,2 24,6 6,6 S ,+15 8 -
686 10 134 - - - 34,5 36,5 6 S 9,3+14 - 40
68 2, 3,4,10, 39 134 - - - 39,i 39,5 6,1 S 1+15 8-9 -
688 36, 3 135 - - - 31,2 29,9 6,1 S 1+15 8 -
689 32,39 1383 08 14 - 39,2 26,i 6,8 S 5+15 9 -
690 10 1389 - - - 36 58,8 5,8 S 6+14 - 10
691 8,10,11,13,

20, 23,26,

30, 36,3

1389 02 36,3 58,8 i,3 S 1,4+16 9
692 32, 39 1389 03 20 - 38,4 26,3 6,8 S 5+15 9 -
693 8, 10, 26 1390 05 - - 39,8 64,4 6,1 S 1+15 -8 20
694 32 1395 10 - - 40,9 22,2 6,i W 4+15 8 -
695 32 1402 06 - - 38,1 22,4 W ,6+15 10 -
696 32 1402 0i 28 - 41,1 29 6,5 W 2,iE+15 8 -

1 2 3 4 5 6 7 8 9 10 11 12 13
697 10 1402 11 16 33 34,8 7 S 7,6+15 20
698 10,36,37 1404 02 11 - 36,2 37,2 7 S 7.6+15 9 -
699 36,37 1404 12 05 - 36,2 37,2 5,7 S 5+14 7 -
700 8, 10, 1113, 20,23,26,30 1405 11 23 - 36,3 58,8 7,4 S 1.7+16 10 16
701 4,23,38 1406 11 29 - 39,8 46,3 7 S 7.6+15 9 -
702 10, 12,41 1407 04 29 - 35,7 36,3 7 S 7.6+15 - 16
703 10, 36, 37 1408 12 30 - 35,8 36,1 7,5 S 2.2+16 10-11 22
704 39 1415 - - - 40,6 35,9 5,7 S 5+14 - -
705 39 1417 - - - 40,2 29,1 5,7 S 5+14 - -
706 10 1419 03 - - 41 34 7,5 S 2,2+16 - 25
707 12,36,37 1419 03 15 - 40,5 30,5 7,4 S 1.7+16 10-11 -
708 32 1421 01 29 - 37,5 22,9 6,5 W 2.7E+15 8 -
709 2, 3,39 1422 - - - 39,8 39,5 6,1 S 1+15 - -
710 36,37 1426 11 - - 26 51,5 7,4 S 1,7E+16 10-11 -
711 10, , 13,30 1428 - - - 35,9 3,8 6,5 S 2.7E+15 - 15
712 10,1113,30 1430 - - - 34,5 48 5,9 S 7.6+14 - -
713 32,39 1430 02 26 - 40,7 23,2 6,5 S 2.7E+15 7 -
714 14 1432 12 - - 15 43 5,7 S 5+14 - -
715 1113,20,

26,30

1440 - - 28,4 53,1 7,1 S 9,+15 9
716 2, 3,39 1441 - - - 38,6 42,2 5,7 S 5+14 8 10
717 39 1443 - - - 41 29 6,1 S 1+15 - -
718 8 10 1446 10 10 4; 00 45,7 26,6 7,6 S 37+16 - 150
719 10, 23 1450 - - - 44,3 34,3 6,5 S 2.7+15 8,5 20
720 39 1456 04 13 - 39,8 39,5 6,1 S 1+15 - -
721 32,39 1456 05 12 - 40,3 24,4 6,5 W 2.7E+15 7 -
722 10 1456 11 29 - 32,6 46,8 6,8 S 5+15 - 30
723 10,11, 13,30 1457 - - - 31,9 46,9 6,1 S 1+15 - -
724 32, 39 1457 - - - 37,3 23,5 6,3 S 1/7+15 7 -
725 2, 3 4,10,

23,26, 32, 39

1457 04 25 - 39,7 39,5 7,5 S 2,2+16 10 -
726 14 1458 11 12 - 31 35,5 6,5 S 2.7+15 - -
727 23 1459 - - - 38,2 47,5 6,5 S 2.7E+15 8,5 20
728 10, , 13,30 1459 - - - 31,1 52,1 6,6 S .+15 - -
729 10, 38 1459 05 20 - 46,3 16,3 6 S 9.3+14 13
730 32, 39 1462 - - - 41 29 6,8 S 5+15 9 -
731 2,3,4 1463 - - - 39,7 39,5 7,1 S 9.3+15 10 -
732 32 1469 - - - 38,4 20,5 7,2 W 1.2+16 10 -
733 32 1-471 08 - - 38,4 23,8 6,4 W 2,2+15 8 -
734 8,10, 38 1471 08 29 8; 00 45,7 26,6 7,1 S 9.3+15 8 9 150
735 8 1471 09 09 - 44,3 34,3 6 9.3+14 7-8 20
736 10 1475 - - - 42,6 75,2 6,4 S 2+15 - 15
737 10 1481 03 - - 39,9 40,4 7,7 S +16 - 17
738 39 1481 03 15 - 36 28 6,1 S 1+15 - -
739 24,32, 36,

37,39

1481 10 03 - 36 28 7,2 W 1,2+16 9 -
740 2,3,4, 23,

26, 32,39

1482

- - - 39,7 39,5 7,5 S 2.2+16 11 -
741 11, 13,20, 1483 02 18 - 25,7 57,3 7,7 S .+16 - -

26, 30

bgcolor=white>8
1 2 3 4 5 6 8 9 10 11 12 13
42 39 1483 10 18 36,3 2i,5 6,1 S 1+15
43 36, 3 1484 04 - - 36,2 3i,2 5,i S 5+14 -
44 10, 11, 13,20,

23, 26,30

1485 08 15 - 36,4 50,5 i,2 S 1,2+16 9 20
45 39 1489 01 06 - 41 29 6,1 S 1+15 - -
46 10,21 1490 02 20 - 39,4 6i,1 5,8 S 6+14 8 15
4 39 1490 11 01 - 35 25 i,4 S 1,+16 - -
48 10, 39 1491 04 25 - 35,2 33,2 6,9 S 6+15 - 15
49 10,11,12,13,

20, 26, 30

1493 01 10 - 32,9 59,8 S ,6+15 9 -
50 32, 39 1493 08 18 - 36,8 2i 6,8 S 5+15 9 -
51 32, 39 1494 0 01 - 35 24,5 i,2 W 1,2+16 9 -
52 10, , 13,20, 30 1495 - - - 35,1 49,5 5,9 S ,6+14 > -
53 11, 13,20, 30 149 - - - 2i,2 56,2 6,5 S 2,+15 8 -
54 10,11,13,20,

23, 30

1498 - - - 3i,2 55,3 6,5 S 2,+15 9,5 15
55 39 1501 - - - 35,5 25 i,4 S 1,+16 - -
56 10,38 1502 03 26 13; 00 45,8 16,1 6 S 9,+14 - 10
5 4, 10, 1113, 20, 23,30 1503 3i,4 43,8 6,9 S 6+15 9
58 10 1505 - - - 41 29 5,8 S 6+14 - 15
59 12,41 1505 06 06 - 34,8 69,1 i,4 S 1.+16 - -
60 39 150 - - - 41 29 6,1 S 1+15 - -
61 32, 39 1508 05 - - 35 25,5 i,2 S 1.2+16 10 -
62 32 1508 09 - - 3i,6 20,i 6,4 W 2,2+15 8 -
63 10,39 1509 - - - 40,9 35,2 i,4 S 1,7E+16 - 40
64 10, 32, 38, 39 1509 09 14 - 40,8 29 i,i S 3,+16 9 -
65 39 1510 11 16 - 41,i 26,6 6,1 S 1+15 - -
66 32 1511 - - - 40,2 24, 6,5 W 2,+15 -
6 4,10, 32 1513 - - - 3i,5 36,5 i,4 S 1.7+16 9 -
68 32 1514 04 16 - 3i,i 21 6,5 W 2,+15 8 -
69 10,38 1516 11 24 - 45,i 26,6 6,i S 4+15 - 150
0 10,38 1523 06 09 - 45,i 26,6 S ,6+15 - 150
1 10,38 1523 11 19 - 45,6 25 6,8 S 5+15 - 30
2 36,3 1529 11 12 - 30,1 31,3 5,i 5+14 -
3 8, 10 1530 - - - 42 45,4 5,i S 5+14 8 15
4 39 1532 - - - 41 29 5,i S 5+14 - -
5 31 1534 - - - 31,i 35,2 6,4 2,2+15 - -
6 4,38 1535

- - - 39,i 39,5 6 S 9,+14 8 -
10 153 06 10 - 35,8 36,3 6,4 S 2,2+15 - 20
39 1539 01 14 - 35,5 25 5,i S 5+14 - -
9 39 1540 - - - 33,5 36,3 6,1 S 1+15 - -
80 39 1542 - - - 40,6 23 6,i S 4+15 - -
81 10 1543 - - - 39,i 39,5 5,8 S 6+14 - 15
82 10,38 1543 - - - 45,i 26,6 6,3 S 1,+15 - 150
83 4, 10, 12, 23,

32

1544 01 22 3i,9 36,9 6,5 S 2,+15 9 -
84 32 1544 04 22 - 38,8 22,6 6,8 W 5+15 9 -
85 10, 38 1545 0 09 8; 30 45,i 26,6 6,9 S 6+15 - 150
86 32 1546 - - - 38,3 25,8 6,5 W 2,+15 8 -

1 2 3 4 5 6 7 8 9 10 11 12 13
787 10, 14, 26, 31 1546 01 14 32 35,5 7 S 7,6+15 20
788 10,11,13, 30 1549 02 15 - 33,7 60 6,7 S 4+15 - 13
789 10, , 13,

20, 23

1550 - - - 38 46,1 7,3 S 1.4+16 - 14
790 10 1552 08 21 2; 30 45,7 26,6 6,4 S 2.2+15 - 150
791 32 1554 07 07 - 37,9 20,5 6,5 S 2.7E+15 8 -
792 10 1556 01 24 - 47 15 7 S 7.6+15 - 45
793 36, 37 1558 - - 29,6 35 6,8 5+15 9 -
794 32 1564 08 12 - 40,3 25 6,6 W 3,+15 7 -
795 32 1566 07 11 - 39 21,7 6,5 S 2.7+15 8 -
796 10, 38 1571 05 10 - 45,5 26,6 6 S 9,+14 - 100
797 10, 32 1572 04 12 - 40,1 24,5 6,6 W 3,+15 8 -
798 4,10,11,13, 23 1573 - - - 35,5 45 6,9 S 6.1+15 9 -
799 36,37 1573 02 04 - 30,1 31,3 5,7 5+14 7 -
800 36,37 1576 04 21 - 30,1 31,3 5,7 5+14 7 -
801 10 1577 - - - 35,5 36,5 6,6 S .+15 - 25
802 10 1577 01 28 - 34,5 34 6,5 S 2.7+15 - 18
803 10 1578 - - - 39,7 39,5 5,8 S 6+14 - 15
804 32 1580 - - - 38,4 22,3 6,7 W 4+15 10 -
805 2, 3,4, 23,

32,38

1584 06 17 15; 00 39,7 39,5 7 S 7,6+15 9-10 15
806 10,32 1585 07 28 - 40,2 24,5 6,7 S 4+15 8 -
807 38 1585 06 18 14; 00 40,1 24,3 6,6 S 3,+15 - 28
808 14,36,37 1588 01 04 13; 00 29 35 6,7 S 4+15 9 -
809 36, 37 1588 04 09 - 30,1 31,3 6,5 2.7+15 9 -
810 8, 10,38 1590 08 10 19; 00 45,7 24,5 6,8 S 5+15 8 10
811 10, 38 1590 09 05 - 46,5 17 6 S 9.3+14 - -
812 10 1590 09 15 - 48,2 15,9 6,2 S 1,4+15 - -
813 1113,30 1591 - - - 29,8 52,4 5,9 S 7.6+14 - -
814 32 1592 05 15 - 37,7 20,7 6,6 W .+15 9 -
815 10, 11, 13,

20,23, 30

1593 - 37,8 47,5 6,1 S 1+15 8 150
816 11 13,20, 30 1593 09 - - 27,7 54,3 6,5 S 2.7E+15 8 -
817 10 1595 04 21 10; 00 45,7 26,6 6,9 S 6+15 - -
818 12 1595 09 22 - 38,5 27,9 6,5 S 2.7E+15 - 150
819 32 1595 11 26 - 34,9 25,3 6,8 W 5+15 9 -
820 8, 10 1596 04 16 - 45,7 26,6 6,3 S 1.7+15 6-7 150
821 4, 10, 32, 38,

39

1598

- - - 40,7 33,9 6,5 S 2.7+15 9 -
822 10, 38 1598 11 22 3; 30 45,7 26,6 6,3 S 1.7+15 - 150
823 39 1599 01 14 - 36,4 25,4 6,1 S 1+15 - 30
824 10, 38 1599 03 04 - 45,7 26,6 6 S 9.3+14 - -
825 10 1600 - - - 40 76 6 S 9.3+14 - -
826 32 1601 04 16 - 40,3 19,6 6,4 W 2.2+15 9 18
827 32, 39 1604 - - - 34,9 24,9 6,8 S 5+15 8 150
828 2, 3, 5, 8,10,

23,39

1605 - - - 40,5 43,3 6,1 S 1+15 8 150
829 10,38 1605 12 24 15; 30 45,7 26,6 6 S 9.3+14 - -
830 10, 38 1606 01 13 1; 30 45,7 26,6 6,6 S .+15 - -
831 10,11,13, 1608 04 20 6; 12 36,4 50,5 7,6 S 2.7+16 >9

20,23,26, 30

bgcolor=white>S
1 2 3 4 5 6 7 8 9 10 ' ill 12 13
832 32 1609 04 36,4 28,4 7,2 W 1.2+16 9
833 32 1612 05 26 - 38,8 20,8 6,6 W .+15 10 -
834 32,39 1612 11 08 - 34,9 25,1 7 W 7.6+15 8 -
835 32 1613 10 12 - 38,8 20,8 6,4 W 2.2+15 8 16
836 8,39 1615 - - - 42,4 41,7 6,1 S 1+15 - 20
837 8, 10, 23 1615 06 05 - 44,9 35,5 6 S 9.3+14 - 11
838 10,23 1616 08 27 - 36,8 37 6,9 S 6.1+15 - -
839 10, , 13,

20, 23,30

1619 05 - - 35,1 58,9 6,5 S 2.7+15 - 6
840 14 1619 07 - - 16,4 44 5,8 S 6,1*14 - 30
841 10 1620 - - - 40,9 71,4 5,8 S 6+14 - 150
842 8,10,38 1620 11 08 12; 30 46,2 23,9 6,5 S 2.7+15 8 -
843 8, 10 1620 12 - 0; 00 45,7 26,6 6,6 .+15 7-8 -
844 32 1621 02 21 - 39,4 22 6,2 W 1.4+15 7 20
845 32, 33 1622 05 05 - 37,6 21 6,6 W .+15 9 -
846 10 1625 - - - 35,2 36,4 6,1 S 1+15 - -
847 32 1625 05 18 - 39,2 27,8 7 W 7.6+15 7 -
848 32 1625 06 28 - 38,7 20,7 6,6 W .+15 9
849 32, 39 1629 03 10 - 35 23,7 7 W 7.6+15 9
850 32, 33 1630 07 02 - 38,8 20,8 6,6 W .+15 10 -
851 10, 38,39 1633 07 30 - 41 29 5,8 S 6.1+14 - 15
852 32, 33 1633 11 05 - 37,6 20,9 6,9 W 6.1+15 10 -
853 39 1635 - - - 36,3 28 5,7 S 5+14 - -
854 32 1636 02 28 - 39,3 26,1 6,3 W 1,7E+15 8 -
855 32, 33 1636 09 30 - 38,1 20,6 7,1 W 9,+15 10 -
856 8,10, 38 1637 02 01 1; 30 45,7 26,6 6,6 S .+15 7-8 150
857 10,23 1639 - - - 36,6 50 6,1 S 1.1+15 8,5 14
858 10, 38 1640 - - - 45,9 15,5 6 S 9.3+14 - 16
859 2, 3 4,10,

1113,20,

23,30

1641 02 05 18; 00 37,9 46,1 6,8 S 5+15 9 20
860 10, 32, 38, 39 1641 05 - - 42,2 23,7 6,9 S 6+15 9 10
861 39 1642 08 19 - 41 29 6,1 S 1,1+15 - -
862 32 1646 01 15 - 35 24,6 6,1 W 1.1+15 7 -
863 10, 39 1646 04 - - 41 29 5,8 S 6+14 - 15
864 12 1646 04 07 - 38,3 43,7 7,4 S 1.7+16 - -
865 39 1647 04 02 - 39,2 44 6,7 S 4+15 - -
866 2, 3,4, 10, 1648 03 02 - 38,3 43,7 7 S 7.6+15 10 -

11, 13,20,

23, 30, 32, 39

867 39 1648 06 28 - 41 29 6,1 S 1+15 - -
868 32 1650 - - - 39,7 20 6,2 W 1.4+15 8 -
869 8 10 1650 04 19 - 45,7 26,6 6,4 S 2.2+15 - 100
870 32,33 1650 10 - - 36,5 25,4 6,8 S 5+15 8 -
871 12, 32 1651 06 08 - 37,8 29,1 6,7 S 4+15 9 -
872 39 1651 06 09 4; 00 37,8 29,3 6,1 S 1+15 - -
873 10 1652 02 20 - 34,7 36,3 6,2 S 1,4+15 - 24
874 8,10,26 1652 06 08 20; 00 42,1 47,7 5,8 6+14 8-9 10
875 10,12,13,

26,32, 39

1653 02 23 - 37,9 28,3 7,2 S 12+16 9 -
876 39 1656 02 - - 34,4 35,8 6,1 S 1+15 - -
877 32 1658 08 24 - 38,3 20,5 6,8 W 5+15 10 -

bgcolor=white>9,+15
1 2 3 4 5 6 8 9 10 11 12 13
88 32,39 1659 02 06 41 29 6,8 S 5+15 9
89 39 1660 - - - 36,2 28 5,i S 5+14 - -
880 2, 3,4,10,23 1660 - - - 40,3 41,5 6,5 S 2,iE+15 9 -
881 32, 39 1660 03 - - 38,3 22,5 6,4 S 2,2+15 9 -
882 10 1661 - - - 35,6 45,i 6 S 9,+14 - 10
883 12 1661 03 15 - 42,2 24 6,5 S 2,+15 - -
884 32 1661 03 31 - 39,4 22,1 6,1 W 1,1+15 -
885 39 1662 - - - 35 25 6,i S 4+15 -
886 32 1664 - - - 38 21 6,i W 4+15 9 -
88i 39 1664 - - - 38,4 2i,2 5,i S 5+14 - -
888 11, 13, 39 1664 - - - 38,1 46,3 6,1 S 1+15 - -
889 32 1665 01 - - 35 25,1 6,i W 4+15 8 -
890 32, 39 1665 01 - - 35,9 25,1 S ,6+15 8 -
891 10, 11, 13,

20,23, 30

1665 06 - - 35,8 52,1 6,5 S 2,+15 8 11
892 10, 20, 30 1666 - - - 32,1 50,5 6,5 S 2.7+15 8 11
893 10 1666 - - - 39,i 39,5 5,8 S 6+14 - 15
894 8, 10 1666 02 - - 45,i 26,6 6 S 9,3+14 6- 150
895 4, 10, 12,20 1666 09 22 - 3i 43 6,6 S 3,+15 9 -
896 4, 23 1666 11 - - 36,i 43,9 6,6 S 3,+15 8 -
89i 32 1666 11 - - 39,6 19,8 6,2 W 1,4+15 8 -
898 2, 3,4,23,

38, 39

1666 11 14 9; 00 39,i 39,5 i,5 S 2,2+16 10-11 10
899 39 166i 11 - - 38,4 2i,2 6,1 S 1+15 - -
900 32 1668 - - - 38,4 20,4 6,5 W 2,+15 -
901 39 1668 - - 40,8 43,8 5,i S 5+14 - -
902 10,23 1668 - - - 44 4i 6,6 S 3,+15 8 40
903 8, 10, 23,26 1668 01 14 - 41 48 i,8 S 4+16 10 40
904 8,23 1668 01 21 - 41,5 4i 6,6 S ,+15 9 15
905 23 1668 02 0i - 41 48 6,8 S 5+15 8 30
906 21 1668 05 - - 25 68 6,i S 4+15 - -
90 23 1668 05 0i - 41 48 6,8 S 5+15 8 30
908 39 1668 0 03 - 40,i 31,6 6,1 S 1,1 +15 - -
909 39 1668 0i 10 - 41,3 33,8 5,i S 5+14 - -
910 23 1668 0i 29 - 41 48 i,1 S 8,5 30
911 32 1668 08 - - 36,9 22,4 6,2 W 1.4+15 8 -
912 1113 1668 08 02 15; 00 40,3 31,5 6 S 9,3+14 9 -
913 10, 12, 39,41 1668 08 1 - 41 36 8 S 6+16 11 40
914 39 1668 08 18 - 41,2 33,8 5,i S 5+14 - -
915 4 1668 11 14 - 40,3 31,5 i,i S ,+16 11 -
916 8, 26 1669 01 04 - 40,6 48,6 5,i S 5+14 9 5
91 2,3,4 1669 01 04 - 38,i 42,4 6 S 9,3+14 8 -
918 4,10, 1113, 23 160 08 01 - 38 42 6,5 S 2,+15 8 20
919 8,23 161 01 11 - 41,5 48,i 6,2 S 1,4+15 8,5 15
920 39 162 - - - 36,5 25,5 6,i S 4+15 - -
921 10, 32, 38,39 162 02 14 - 39,9 26 W ,6+15 9 14
922 10, 32, 38, 39 162 05 25 - 41 30 6,5 S 2,7E+15 9 14
923 32 163 05 0 - 34,9 25 6,8 W 5+15 8 -
924 10, 11, 13,

20, 23, 26,30

163 0i 30 36,4 59,3 6,6 S 3,+15 8-9 15
925 10,39 164 - - - 40,2 29,1 5,8 S 6+14 - 15

1 2 3 4 5 6 8 9 10 11 12 13
926 32 164 01 01 39,5 20 6,5 W 2,+15 9
92 32 164 01 23 - 38,4 26,4 6,5 W 2,iE+15 8 -
928 32 164 01 26 - 39,4 21,9 6,2 W 1.4+15 -
929 32 164 03 21 - 39,2 23,5 6 W 9,+14 6 -
930 32 166 04 23 - 3i,5 20,6 6,5 W 2,iE+15 -
931 32 16ii - - - 40,5 23 6,2 S 1.4+15 8 -
932 11, 13,20,30 16ii 16 8 - 28 54,1 6,4 S 2,2+15 8 -
933 8, 10 16ii 16 8 - 36,3 59,6 5,8 S 6+14 8-9 10
934 10, 11, 13,

20, 23,30

168 02 03 5; 30 3i,2 50 6,5 S 2,+15 8 11
935 10,11, 13,

20, 30

168 - - - 34,3 58,6 6,5 S 2,+15 8 11
936 2, 3,4, 169 06 04 1; 00 40,1 44,8 S ,6+15 10 9

5,10,11 13,

23,26, 30

93 8,10,38 169 08 09 2; 00 45,i 26,6 6,8 S 5+15 8 100
938 39 1681 - - - 40,2 44,5 6,1 S 1+15 - -
939 32, 39 1681 01 10 - 34,9 24,8 6,3 S 1.+15 9 -
940 8,10,38 1681 08 18 0; 00 45,i 26,6 6,i S 4+15 8 150
941 4 1682 05 19 - 38,i 42,4 6 S 9,3+14 8 -
942 39 1682 06 13 22; 30 41,i 44,8 5,i S 5+14 - -
943 32 1684 - - - 39,4 26,1 6,2 W 1.4+15 -
944 39 1684 09 14 - 40,i 35,9 6,1 S 1+15 - -
945 2, 3,4, 10, 1685 11 22 23; 00 39 41 6,i S 4+15 8 -

1113,20,

23,32

946

94

36, 3

10, 11, 13,

23,30

168

168

0 21 - 38,4

36,3

2,2

52,6

6.4

6.5

S 2,2+15

2,+15

8-9 15
948 4,23 1688 - - - 40,3 41,5 6,5 S 2,+15 9 -
949 26, 32 1688 0 10 - 38,4 2i,2 6,8 W 5+15 10 -
950 39 1688 09 10 - 39,2 26,5 6,1 S 1+15 - -
951 39 1690 0 11 - 41 29 5, S 5+14 - -
952 4 1691 - - - 38,6 40 6 S 9,3+14 8 -
953 10,23 1693 - - - 36,5 41,9 6, S 4+15 - 15
954 16 1694 06 - - 38,5 23,6 6,5 S 2,iE+15 - -
955 10,11,13,

20,23,30,

36, 3

1695 05 11 5; 00 3,1 5,5 S ,6+15 9
956 4, 10, 23, 30, 38 1696 04 14 - 39,1 43,9 S ,6+15 9-10 10
95 2, 3,4 1696 06 10 - 38,4 42,1 6,5 S 2,7E+15 9 -
958 32 1696 09 - - 38,1 24,1 6,4 W 2,2+15 -
959 32 1696 09 14 - 3,6 20,6 6,5 W 2,+15 9 -
960 14 1698 10 02 - 32 30 6 S 9,3+14 - -
961 10,38 1699 02 11 - 45,6 15,3 6,1 S 1+15 - 14
962 39 101 03 0 - 38,5 43,4 6,1 S 1+15 - -
963 32 101 03 19 - 40,2 19,8 6,4 S 2,2+15 8 -
964 8, 10, 38 101 06 12 0; 00 45, 26,6 ,1 S 9,+15 8 150
965 32, 39 102 02 25 - 3, 29,1 W ,6+15 10 -
966 16 103 02 - - 38,4 21,8 6 S 9,3+14 - -
96 11, 13,30 103 - - - 26,6 54,9 6,8 S 5+15 - -

bgcolor=white>977
1 2 3 4 5 6 7 8 9 10 11 12 13
968 2,3,4, 39 1703 03 15 38,7 42,4 5,7 S 5+14 8 10
969 10, 38, 39 1704 - - - 42,8 24 6,1 S 1.1+15 - 14
970 2, 3,4, , 13,

23

1704 01 27 - 38,4 42,1 6,7 S 4+15 9 -
971 32 1704 11 22 - 38,7 20,7 6,6 W .+15 9 -
972 10, 36, 37 1705 - - - 33,5 36,3 6,9 S 6.1+15 8 35
973 10 1705 01 27 - 38,7 41,7 6,7 S 4+15 - 13
974 16 1705 09 03 - 38,2 23,8 6,5 S 2.7E+15 - -
975 39 1707 - - - 40,6 43,1 5,7 S 5+14 -
976 32 1707 05 18 - 36,4 25,4 6 S 9.3+14 6 -
32 1707 06 11 - 37,5 20,8 6,6 W .+15 8 -
978 16 1708 - - - 38,5 23,6 6 S 9,+14 - -
979 4 1708 - - - 38,7 41,6 6 S 9.3+14 8 -
980 32 1710 05 17 - 37,5 20,5 6,6 W .+15 8 -
981 10, 38 1711 10 11 0; 30 45,7 26,6 6,4 S 2.2+15 - 150
982 10,21 1714 - - - 36,5 69 6,4 S 2.2+15 8 20
983 10,39 1714 - - - 38,7 35,5 5,8 S 6+14 - 15
984 32, 16 1714 07 27 - 38,2 21,7 6,6 W 3,+15 9 -
985 32, 33 1714 08 28 - 38,1 20,5 6,4 W 2.2+15 8 -
986 2, 3,4, 10,11,

13,23, 30, 39

1715 03 08 - 38,4 43,5 6,5 S 2.7E+15 9 16
987 32, 39 1717 - - - 35 24,9 6,7 W 4+15 9 -
988 11, 13,20, 30 1717 03 12 0; 00 38,1 46,3 5,9 S 7.6+14 >7 -
989 36, 37,39 1717 06 07 - 38,7 35,5 6,1 S 1.1+15 9 -
990 39 1718 05 05 - 41 29 6,1 S 1.1+15 - -
991 4,23 1718 07 08 - 40,3 41,5 7 S 7,6+15 9 -
992 10,39 1718 12 10 - 35,2 33,2 6 S 9.3+14 - 13
993 10, 39 1719 03 - - 36,5 36,9 6,4 S 2.2+15 - 20
994 39 1719 03 - - 38,5 27 6,1 S 1.1+15 - -
995 10, 32, 38, 39 1719 05 25 - 40,7 29,5 6,8 W 5+15 9 -
996 32 1719 07 23 - 40,4 23,9 6,2 W 1.4+15 8 -
997 21 1720 07 15 - 28,7 77,2 7,9 S 5+16 - -
998 2, 3,4,5, 8, 1721 04 26 7; 00 39,9 46,7 7 S 7.6+15 11 -

10, , 12, 13,

23, 26,30

999 32 1722 06 05 - 38,7 20,5 6,3 W 17+15 8 -
1000 32 1723 02 22 - 38,6 20,7 7 W 7.6+15 9 -
1001 16 1725 - - - 37,9 23 6 S 9.3+14 - -
1002 16 1726 - - - 38,5 23,6 6 S 9.3+14 - -
1003 10,39 1726 04 15 - 36,3 36,3 6,1 S 1.1+15 - 15
1004 2, 3,23 1727 11 18 - 38 46,2 7,2 S 1.2+16 10 15
1005 32 1729 07 09 - 37,9 20,4 6,5 W 2.7+15 8 -
1006 8, 10 1730 - - - 45,7 26,6 5,8 S 6+14 6 100
1007 10 1730 04 06 4; 00 45,7 26,6 5,8 S 6+14 - 127
1008 32 1730 07 10 - 40,4 26,1 6,5 W 2.7+15 8 -
1009 32 1731 - - - 39,6 22,5 6 W 9.3+14 8 -
1010 32 1732 11 - - 39,5 20,1 6,6 W .+15 8 -
1011 32, 39 1733 12 23 - 37,1 24,8 6,5 W 2.7E+15 8 -
1012 32 1735 - - - 36,8 24,5 6,5 W 2,7E+15 8 -
1013 32 1735 09 01 - 39,5 21,8 6,5 W 2.7E+15 7 -
1014 10, 39 1735 12 - - 35 34 6,5 S 2,7+15 - 24
1015 39 1737 - - - 36,3 36,1 5,7 S 5+14 - -

bgcolor=white>-
1 2 3 4 5 6 7 8 9 10 11 12 13
1016 10, 39 1737 41 29 5,8 S 6,1+14 15
1017 32 1737 03 06 - 39,8 26,6 7,2 W 1.2+16 9 -
1018 39 1737 03 06 17; 30 33,4 27 5,7 S 5+14 - -
1019 8, 10, 38 1738 06 11 10; 00 45,7 26,6 7 S 7,6+15 8-9 150
1020 32, 39 1738 07 20 - 36,8 24,5 6,5 W 2.7+15 9 -
1021 32 1738 12 23 - 38,5 26,3 6 W 9,+14 6 -
1022 10, 38 1739 02 04 - 44 21,3 6,1 S 1,1+15 - 14
1023 32, 39 1739 04 04 4; 30 38,4 27,2 6,7 S 4+15 9 -
1024 32 1740 01 - - 39,7 28,1 6,2 W 1.4+15 8 -
1025 12,16, 32, 33 1740 10 05 0; 00 38,7 22,4 6,6 S 3,+15 8 -
1026 39 1741 - - - 35,1 33,9 5,7 S 5+14 - -
1027 39 1742 02 09 - 33 23,8 6,1 S 1+15 - -
1028 32 1742 02 14 - 37,8 20,6 6,5 W 2,7+15 9 -
1029 16, 32 1742 02 21 - 37,9 22,6 6,8 S 5+15 - -
1030 8,10,11, 13,

23

1742 08 05 - 42,1 45,6 6,8 S 5+15 9 24
1031 32,39 1743 02 12 - 39,3 22,8 6,8 W 5+15 8 -
1032 32 1743 02 20 - 39 20,4 7 W 7,6+15 9 -
1033 32 1745 06 - - 39,7 19,9 6,2 W 1.4+15 8 -
1034 10 1746 - - - 41,7 26,6 5,8 S 6,1+14 - 15
1035 16, 32, 39 1748 05 25 - 38,2 22,2 6,8 W 5+15 9 -
1036 10 1750 - - - 43 42,6 6,9 S 6+15 - 15
1037 39 1750 05 12 - 36,3 23 6,1 S 1+15 - -
1038 32,39 1750 06 07 - 36,3 22,7 7,4 S 1,7E+16 10 -
1039 10,32, 38, 39 1750 10. - - 42,1 24,8 7,2 S 1,2+16 9 20
1040 23 1751 03 - - 45,6 36,2 7 S 7,6+15 9 24
1041 32, 39 1751 06 07 - 37,8 27 7,6 S 2,7E÷16 10 -
1042 39 1752 05 26 - 41 29 5,7 S 5+14 - -
1043 32 1752 06 - - 37,8 20,4 6,4 W 2.2+15 8
1044 39 1752 07 18 - 40,8 26,3 6,1 S 1+15 -
1045 10, 39 1752 07 21 - 35,2 35,3 6,8 S 5+15 - 22
1046 10,12, 32, 39 1752 07 29 - 41,7 26,5 6,7 S 4+15 9 -
1047 16,32 1753 03 06 - 38,1 22,6 6,2 S 1,4+15 7 -
1048 36,37 1753 12 18 - 33,5 36,3 5,7 - 5+14 7 -
1049 10,39 1754 - - - 39,8 37 5,8 S 6+14 - 15
1050 32 1754 06 12 - 36 21,7 7 W 7,6+15 6 -
1051 16 1754 06 15 - 38,4 21,9 6 S 9,+14 - -
1052 39 1754 07 - - 38,4 27,2 5,7 S 5+14 - -
1053 36, 37 1754 08 31 - 33,5 36,3 5,9 - 7,6+14 8 -
1054 10, 32, 38, 39 1754 09 02 - 40,8 29,4 6,8 S 5+15 9 15
1055 14 1754 10 - - 29,6 32,2 6,6 S ,+15 - -
1056 32,39 1755 02 - - 39,3 26,3 6,7 S 4+15 6 -
1057 10, 11, 13,20, 30 1755 06 07 - 34 51,4 5,9 S 7,6+14 >7 -
1058 16, 32 1756 10 20 - 37,7 22,8 7 W 7,6+15 9 -
1059 32 1758 05 - - 38,9 22,7 6,8 W 5+15 9 -
1060 4,23 1759 01 12 15; 00 38,3 38,3 6,5 S 2,7+15 9 -
1061 32 1759 06 14 - 38,3 20,4 6,3 W 1,7+15 8 -
1062 10, 32,33 1759 06 22 - 40,7 23,2 6,5 W 2,7+15 9 -
1063 39 1759 06 26 - 40,7 23 6,1 S 1+15 - -
1064 10, 38, 39 1759 06 29 - 42,1 24,8 6,1 S 1+15 - 14

bgcolor=white>-
1 2 3 4 5 6 7 8 9 10 11 12 13
1065 10, 26,32,36,

37,39

1759 10 30 - 33 35,5 6,7 S 4E+15 10-11 18
1066 10, 12,36,37,

41

1759 11 25 33,8 36,2 7,4 S 1,7E+16 8 30
1067 36,37 1759 12 07 - 36,8 36,3 5,7 5E+14 8 -
1068 36, 37 1760 03 08 - 33,5 36,4 5,7 5E+14 8 -
1069 39 1762 11 02 - 40,2 26,4 5,7 s 5E+14 - -
1070 39 1763 01 13 - 38,4 27,2 5,7 s 5E+14 - -
1071 10 1763 06 28 5; 22 47,8 18,1 6,2 s 1,4E+15 - 11
1072 10,39 1763 09 03 - 41 29 5,8 s 6.1E+14 - 15
1073 39 1764 02 14 - 34,4 35,8 6,1 s 1,1E+15 - -
1074 10, 32 1765 11 15 - 40,2 24,9 6,8 s 5E+15 6 -
1075 39 1766 - - - 38,5 30,5 5,7 s 5E+14 - -
1076 10, 39 1766 04 23 - 40,8 28,2 5,8 s 6+14 - 15
1077 10, 32, 39 1766 05 22 - 41 29 6,8 s 5E+15 9 20
1078 32 1766 07 24 - 38,1 20,4 6,7 w 4E+15 9 -
1079 10, 32, 38, 39 1766 08 05 - 41 27,5 TJ w 3,3E+16 9 -
1080 39 1766 10 09 - 40 41,7 5,7 s 5E+14 - -
1081 32 1766 11 09 - 39,7 22,2 6,3 w 1,7E+15 8 -
1082 10,38,39 1766 11 13 - 41 29 5,8 s 6+14 - 15
1083 32,33 1767 07 22 - 38,2 20,3 7,2 w 1,2E+16 10 -
1084 39 1768 10 05 - 41 29 5,7 s 5E+14 - -
1085 16 1769 - - - 38,4 22,2 6,5 s 2,7E+15 - -
1086 16 1769 06 27 - 37,4 22,9 6,6 s 3,3E+15 - -
1087 32 1769 10 12 - 38,9 20,6 6,8 w 5E+15 9 -
1088 10 1770 - - - 42,8 74,1 6 s 9,3E+14 - 15
1089 2, 3,4,23,38 1770 10 - - 40,3 41,5 6,5 s 2,7E+15 9 15
1090 32 1773 03 16 - 39,3 22,7 6,6 w 3,3E+15 8 -
1091 32 1773 05 12 - 39,5 20,1 6,4 w 2,2E+15 8 -
1092 16 1775 04 16 - 37,9 22,9 6 s 9,3E+14 - -
1093 10, 38 1776 01 18 - 45,5 26,6 6,4 s 2,2E+15 - 150
1094 32, 39 1776 06 16 - 38,4 27,2 6,1 s 1,1E+15 - -
1095 39 1778 07 03 2; 30 38,4 27 6,5 w 2,7E+15 9 -
1096 39 1778 10 01 12; 45 38,4 27,2 6,1 s 1.1+15 - -
1097 10, 11, 13,20,

30

1778 12 15 7; 00 34 51,4 6,2 s 1,4E+15 8 14
1098 32 1779 02 04 - 40,1 24,2 6,2 w 1,4E+15 6 -
1099 39 1779 12 27 - 38,3 46,4 6,1 s 1,lE+-15 - -
1100 10, 23 1780 - - - 36 60 6,5 s 2,7E+15 7,5 30
1101 4 1780 - - - 38,3 38,3 6 s 9,3E+14 8 -
1102 4,10, 12, 30 1780 01 08 - 38,1 46,3 7,4 s 1,7E+16 9 -
1103 1113 1780 01 08 0; 00 38,1 46,3 7,6 s 2,7E+16 11 -
1104 32, 39 1780 10 28 - 35 25,8 7,4 s 1,7E+16 10 -
1105 10, 23 1781 - - - 36,5 43 7 s 7,6E+15 9,5 14
1106 39 1781 01 27 - 39,9 41,3 5,7 s 5E+14 - -
1107 32, 39 1781 08 28 - 39,6 22,5 6,3 s 1,7E+15 8 -
1108 16 1783 03 09 1; 00 37,6 22,1 6,2 s 1,4E+15 -
1109 32 1783 03 23 - 38,6 20,5 7 w 7,6E+15 10 -
1110 10,39 1783 07 20 - 35,6 36,4 6,5 s 2,7E+15 45
1111 2,3,4,12,23,

39,411

1784 07 07 14; 00 39,5 40,3 7 s 7,6E+15 10 -
1112 39 1784 10 26 - 41 25,5 6,1 s 1+15 - -

1 2 3 4 5 6 7 8 9 10 11 12 13
1113 10, 32 1784 11 06 41,1 25,3 6,5 S 2,7+15 9 15
1114 2, 3, 39 1785 - - - 41,8 42 5,7 S 5+14 - -
1115 32 1785 01 31 - 38,2 21,7 6,6 W ,+15 9 -
1116 3,10 1785 02 09 20; 00 38,2 21,6 6 S 9,+14 - -
1117 3,10 1785 02 10 3; 00 38,3 21,6 7 S 7,6+15 - -
1118 10 1785 02 23 - 44,5 47 6 S 9,3+14 - 60
1119 3,10 1785 06 13 - 38,4 23,5 6,2 S 1,4+15 - -
1120 32 1786 02 05 - 39,6 19,9 6,6 W ,+15 8 -
1121 2 3 4 10,11,

13,23, 30

1786 10 - - 38,3 45,6 6,3 S 1,7+15 - -
1122 39 1787 - - - 39,8 39,5 6,1 S 1,1+15 - -
1123 10 1787 01 18 - 45,7 26,6 6,4 S 2,2+15 - 150
1124 32 1787 06 19 - 39,5 21,9 6 W 9,3+14 7 -
1125 14 1788 10 - - 15 42 6,2 S 1,4+15 - -
1126 3,10 1788 10 15 19; 15 37,5 22,9 6,2 S 1,4+15 - -
1127 10, 39 1789 - - - 38,7 39,9 5,8 S 6,1+14 - 15
1128 10,11,12,23, 32 1789 05 29 - 39 40 7 S 7,6+15 8 -
1129 39 1790 - - - 39,9 41,3 6,1 S 1,1+15 - -
8,10, 38 1790 04 06 19; 29 45,7 26,6 6,9 S 6,1+15 8 150
1131 32 1791 11 02 - 37,9 20,9 6,7 W 4+15 10 -
1132 8,10,38 1793 12 08 6; 10 45,7 26,6 6,4 S 2,2+15 6-7 100
1133 39 1795 12 - - 36,2 37,1 5,7 S 5+14 - -
1134 4,10,12,36,

37, 39

1796 04 26 - 35,5 36 6,6 S ,+15 8
1135 10, 32 1797 03 - - 40,3 24,8 6,6 S 3,+15 6 60
1136 32, 39 1798 06 - - 36,3 23 7,4 S 1,7+16 - -
1137 10,21 1799 - - - 39,4 67,2 6 S 9,+14 9 10
1138 26 1800 - - - 36,2 53,3 6,3 S 1,7+15 - -
1139 10, 39 1802 - - - 34 36,2 6,2 S 1,4+15 - 20
1140 8,10,26 38,

39

1802 10 26 10; 55 45,7 26,6 7,4 S 1,7+16 9 150
1141 16,32 1804 06 08 - 38,2 21,7 6,4 S 2,2+15 9 -
1142 39 1805 04 18 - 37 22 5,7 S 5+14 - -
1143 39 1805 05 - - 38 22 5,7 S 5+14 - -
1144 32, 39 1805 07 03 - 35,1 24 7,2 W 1,2+16 9 -
1145 32, 39 1805 09 17 - 38 24 6 W 9,+14 7 -
1146 16, 32 1806 01 23 - 38,3 21,9 6,3 S 1,7+15 8 -
1147 10 1807 - - - 43,1 76,9 6,7 S 4+15 - 20
1148 10,1113,20,

23,30

1808 06 26 18; 00 35,3 54,5 6,6 S ,+15 - 12
1149 10, 11, 13,20,

23,30

1808 12 16 - 36,3 50,3 5,9 S 7,6+14 >7 -
1150 39 1809 - - - 38,3 26,3 5,7 S 5+14 - -
1151 10, 11, 13,20,

23, 30

1809 - 36,3 52,6 6,5 S 2,7+15 8 -
1152 32 1809 05 03 - 39,5 20,1 6,1 W 1,1+15 8 -
1153 10, 11, 13,20,

23, 30

1810 - - - 37,9 57,1 6,5 S 2,7+15 8 11
1154 32, 39 1810 02 16 - 35,5 25,6 7,8 W 4+16 9 61
1155 10 1812 03 05 12; 30 45,7 26,6 6,4 S 2,2+15 - 150
1156 32 1812 05 29 - 40,5 21,3 6,5 W 2,7+15 8 -

bgcolor=white>-
1 2 3 4 5 6 7 8 9 10 11 12 13
1157 32 1813 12 09 39,6 20,6 6,2 W 1.4+15 9
1158 39 1814 01 - - 35 26,3 5,7 S 5+14 - -
1159 32 1815 - - - 38,7 20,7 6,3 W 1.7+15 9 -
1160 32, 39 1815 12 - - 34,9 25,6 6,8 S 5+15 9 -
1161 39 1817 - - - 37,8 27 5,7 S 5+14 - -
1162 16, 32,39 1817 08 23 8; 00 38,3 22,3 6,5 S 2,7E+15 10 -
1163 10,32, 38,39 1818 04 25 - 42,8 23,3 6 S 9,3+14 8 16
1164 39 1819 02 28 - 41,7 44,8 5,7 S 5+14 - -
1165 21 1819 06 16 - 24,1 69,1 8,2 S 9,+16 - -
1166 32, 39 1820 03 17 - 38,4 26,2 6 W 9,3+14 7 -
1167 32 1820 03 17 - 38,8 20,6 6,3 W 1.7+15 9 -
1168 32, 33 1820 12 29 - 37,8 21,1 6,8 W 5+15 9 -
1169 8, 10 1821 - - - 39,5 64,5 6,4 S 2,2+15 8 20
1170 8 10 1821 02 10 0; 00 45,7 26,6 6 S 9,3+14 6-7 100
1171 8,10, 38 1821 11 17 13; 30 45,7 26,6 6,7 S 4+15 7-8 150
1172 10,12, 32, 39 1822 08 13 - 36,6 36,7 7,4 S 1,7E+16 10 17
1173 10 1822 09 - - 40,3 71,5 6,2 S 1,4+15 - 12
1174 10 1823 01 01 - 40,3 71,5 6,2 S 1,4+15 - 12
1175 32 1823 06 19 - 39,5 20,3 6,4 W 2,2+15 9 -
1176 11,13,20 1824 06 02 29,7 51,5 6,1 S 1+15 8 -
1177 11,13,20,30 1824 06 25 4; 50 29,8 52,4 6,4 S 2,2+15 8 -
1178 11,13,20,23 1825 - - - 36,1 52,5 6,7 W 4+15 >8 -
1179 32 1825 01 19 - 38,7 20,6 6,7 W 4+15 10 -
1180 10 1826 - - - 40,7 36,6 5,8 S 6+14 - 15
1181 32 1826 01 26 - 39 20,6 6,1 W 1+15 7 -
1182 39 1826 02 08 20; 30 39,5 28 6,1 S 1+15 - -
1183 39 1827 - - - 40,7 36,6 6,1 S 1+15 - -
1184 2, 3,4,5, 8, 1827 10 08 - 40,6 44,5 7 S 7,6+15 9 -

10, 11, 13,23,

38,39

1185

1186

39

8,10,26

1828

1828

06

08

15 09 5; 00

16; 00

38,4

40,7

27,2

48,4

5,7

5,7

S

S

5+14

5+14

8 10
1187 32, 39 1829 04 13 16; 00 41,1 24,8 6,9 W 6+15 9 -
1188 39 1829 05 05 - 41 29 5,7 S 5+14 - -
1189 10, 12, 32, 33,

38, 39

1829 05 05 41,1 24,3 7,3 S 1,4+16 10 16
1190 10 1829 07 01 19; 30 47,5 22,2 6,2 S 1,4+15 - 35
1191 8,10, 38 1829 11 26 1; 40 45,7 26,6 6,8 S 5+15 8 150
1192 38 183(0

1831

18 1 - 40,3 43,9 6,1 S 1+15 >9 -
1193 8, 10, 23, 26 1830 03 09 11; 22 43,1 46,8 6,3 S 1,7E+15 8 9 16
1194 10, 11, 13,20,

23, 30

1830 03 27 - 35,7 52,3 7,1 S 9,3+15 9 18
1195 26 1830 05 09 - 35,7 52,1 6,5 S 2,7+15 - -
1196 39 1831 02 22 - 36,2 37,1 5,7 S 5+14 - -
1197 32, 39 1831 04 03 - 37,8 27 6,1 S 1+15 7 -
1198 8, 10 1831 08 03 3; 00 45,7 26,6 5,8 S 6+14 6 100
1199 10,21 1832 01 - - 36,5 71 7,4 S 1,7+16 9 180
1200 8, 10 1832 02 17 1; 45 45,7 26,6 5,7 S 5+14 6 100
1201 10, 11, 13,23,

30

1833 - - - 37,3 58,1 6,2 S 1.4+15 8,5 14
1202 32 1833 01 19 - 40,5 19,6 6,5 W 2,7+15 9 -

bgcolor=white>39
1 2 3 4 5 6 7 8 9 10 11 12 13
1203 2,3, 10, ,

13, 23, 30

1834 - - - 39,7 43,7 6 S 9,3+14 8,5 14
1204 10, 26, 31 1834 05 23 - 31,3 35,6 7 S 7,6+15 - 22
1205 10 1834 10 15 6; 30 47,6 22,3 6,8 S 5+15 - 32
1206 10,39 1835 08 23 17; 00 38,3 35,5 6,1 S 1.1+15 - 18
1207 10, 12, 26, 32,

36, 37, 39

1837 01 01 1; 00 33 35,5 6,4 S 2,2+15 9 -
1208 16, 32, 39 1837 03 20 8; 00 37,5 23,5 6,5 S 2,7+15 7 -
1209 20 1837 06 - - 38,1 44,7 6,1 S 1+15 8 -
1210 39 1837 08 15 - 36 22 5,7 S 5+14 - -
1211 11, 12, 13,20,

30,411

1838 - - - 29,5 60 7 S 7,6+15 9 -
1212 8, 10,26 1838 01 23 18; 36 45,7 26,6 7 S 7,6+15 8 150
1213 39 1840 07 02 14; 00 40,1 43,6 6,1 S 1+15 -
1214 2, 3, 5, 8,10,

11,13,20, 23,

26, 30

1840 07 02 19; 00 39,5 43,9 7,4 S 1,7E+16 9
1215 2,3, 8, 39 1840 07 06 - 39,7 44,4 5,7 S 5+14 - -
1216 32 1840 10 30 - 37,9 20,9 6,7 W 4+15 10 -
1217 2, 3, 5, 8,10,

20, 23

1841 05 17 19; 00 39,5 43,9 5,7 S 5+14 7 -
1218 39 1841 10 06 2; 30 41 29 5,7 S 5+14 - -
1219 32, 39 1842 04 18 8; 30 36,5 22,3 6,7 S 4+15 9 -
1220 2,3,10, 11,

13, 20, 30

1843 04 18 8; 00 38,6 44,8 5,9 S 7,6+14 >7 -
1221 32 1843 09 05 - 41,2 20,1 6,2 W 1.4+15 9 -
1222 32, 39 1843 10 06 - 36,3 27,5 6,7 S 4+15 9 -
1223 10 1844 - - - 41 34,8 5,8 S 6,1+14 - 15
1224 39 1844 01 01 - 39,9 41,3 5,7 S 5+14 - -
1225 11,13,20 1844 05 12 17; 00 33,6 51,4 6,4 S 2,2+15 8 -
1226 10, 39 1844 05 12 - 41 35 6,1 S 1,1+15 - 18
1227 10, 11,13,20,

23,30

1844 05 13 19; 00 37,4 48 6,9 S 6,1+15 9 15
1228 39 1845 05 24 1; 00 41,6 43,5 5,7 S 5+14 - -
1229 32, 39 1845 06 23 - 38,5 27,5 6,4 S 2,2+15 8 -
1230 39 1845 10 09 - 39,3 26,3 5,7 S 5+14 - -
1231 32, 39 1845 10 12 - 39,1 26,2 7,4 S 1.7+16 10 -
1232 39 1845 12 01 - 39,1 26,5 6,1 S 1,1+15 - -
1233 32 1846 03 28 - 35,8 25 7,7 W ,+16 7 90
1234 32, 33, 39 1846 06 10 - 37 22 7,4 S 1,7E+16 - -
1235 39 1846 06 13 - 37,8 27 6,1 S 1+15 - -
1236 - 1846 06 21 - 37,8 27 6,7 S 4+15 9 -
1237 39 1847 - - - 36,6 36,1 5,7 S 5+14 - -
1238 14 1847 08 07 8; 15 29,7 30,8 5,8 S 6+14 - -
1239 39 1848 04 23 - 42,7 23,4 6,1 S 1+15 - -
1240 2, 3, 39 1850 - - - 39,9 41,3 5,7 S 5+14 7 15
1241 10 1850 - - - 39,9 43,3 6,2 S 1,4+15 - 20
1242 39 1850 02 12 - 33,9 35,5 5,7 S 5+14 - -
1243 1850 04 03 3; 10 38,4 27,5 6,1 S 1+15 - -
1244 39 1850 10 13 9; 23 38,4 27,2 6,1 S 1+15 - -
1245 10, 32,38,39 1851 02 28 - 36,5 29,1 7,1 W 9,+15 9 -

1 2 3 4 5 6 7 8 9 10 11 12 13
1246 10, 11,13,23,

30

1851 04 09 16; 00 40 47,3 6,2 S 1,4+15 - -
1247 39 1851 04 21 - 40 28,4 6,1 S 1+15 - -
1248 10,11, 13,20,

23,30

1851 06 - - 36,8 58,5 6,9 S 6+15 9 -
1249 10,38,39 1851 08 23 - 40 28,4 5,8 S 6+14 - 15
1250 32 1851 10 12 - 40,5 19,6 6,7 W 4+15 10 -
1251 8, 10, 26 1852 02 22 - 37,1 58,4 5,8 S 6+14 89 10
1252 16 1852 07 14 4; 20 38,7 22,3 6,1 S 1+15 - -
1253 2, 3,10,23,

26,32,39

1852 07 24 - 39,9 41,3 7,3 S 1,4+16 9 -
1254 39 1852 10 19 3; 25 36,6 29,1 5,7 S 5+14 - -
1255 39 1853 01 18 6; 00 40,6 44,9 6,1 S 1+15 - -
1256 11,13,20,26,

30

1853 05 05 12; 00 29,6 52,5 6,2 S 1,4+15 8 -
1257 16, 32, 39 1853 08 18 10; 30 38,3 23,2 6,5 S 2,7+15 10 -
1258 16 1853 09 29 23; 45 38,3 23,2 6,3 S 1,7+15 - -
1259 39 1854 - - - 36,2 36,6 5,7 S 5+14 - -
1260 32 1854 07 30 - 39,8 20,1 6,3 W 1,7+15 9 -
1261 1113,20, 30 1854 11 - - 30,6 59,4 5,8 S 6+14 >7 -
1262 10,12, 26, 32,

38, 39

1855 02 28 40,2 29,1 7,5 S 2,2+16 9 22
1263 39 1855 03 02 - 36,6 29,1 6,1 S 1+15 - -
1264 32 1855 04 11 - 40,2 29,2 7 W 7,6+15 9 -
1265 10, 12, 26, 32,

38, 39

1855 04 11 - 40,2 29,1 7,6 S 2.7E+16 10
1266 32 1855 07 03 - 41,9 19,6 6,5 W 2.7E+15 9 -
1267 39 1855 12 18 1; 20 38,4 27,2 5,7 S 5+14 - -
1268 32, 39 1856 10 12 - 36,3 28 8,2 W 9,+16 10 61
1269 32, 39 1856 11 13 - 38,4 26,1 6,6 W ,+15 9 -
1270 39 1857 02 12 0; 30 38,4 27,2 5,7 S 5+14 - -
1271 26, 32 1857 04 09 - 38,4 42,1 6,7 S 4+15 9 -
1272 16, 32, 33, 39 1858 02 21 - 37,9 22,9 6,7 S 4+15 10 -
1273 32 1858 04 05 - 39,7 20,7 6 W 9,+14 8 -
1274 14 1858 06 13 5; 00 29,6 50,5 5,9 S 7,6+14 - -
1275 32 1858 09 20 40 20 6,4 W 2,2+15 9 -
1276 10,32, 38,39 1858 09 30 - 42,8 23,5 6,6 W ,+15 8 -
1277 32 1858 10 10 - 40,3 19,6 6,5 W 2,7+15 9 -
1278 2, 3,10,23,

39

1859 01 21 10; 00 40 41,7 6 S 9,3+14 9 8
1279 2,3,10,11,13,

23,26, 32, 39

1859 06 02 - 40 41,3 6,5 S 2,7+15 - 10
1280 8,10,23,26 1859 06 11 13; 00 40,7 48,5 6 S 9,+14 - 10
1281 39 1859 06 26 10; 00 39,9 41,3 5,7 S 5+14 - -
1282 2,3,10,23 1859 07 13 - 39,9 41,3 6,5 S 2,7+15 8,5 20
1283 39 1859 07 25 - 42,1 24,1 5,7 S 5+14 - -
1284 10,32, 38,39 1859 08 21 - 40,2 26 6,7 S 4+15 9 -
1285 39 1859 08 31 6; 30 42,7 23,3 5,7 S 5+14 - -
1286 32 1860 04 10 - 40,2 20,3 6,4 S 2,2+15 8 -
1287 32 1860 06 07 - 40,2 29,1 6,2 W 1,4+15 9 -
1288 32, 33, 39 1860 08 06 - 40,5 25,8 6,2 S 1,4+15 7 -
1289 39 1860 12 03 - 39,9 41,3 5,7 S 5+14 - -

1 2 3 4 5 6 7 8 9 10 11 12 13
1290 2,3, 8,10,11,

13,23

1861 05 24 13; 00 40 46,6 6,6 S ,+15 7-8 30
1291 10, 12, 13,26,

32,33

1861 12 26 6; 30 38,2 22,3 6,7 S 4+15 10 -
1292 39 1862 01 01 9; 00 38,3 22,3 6,1 S 1.1+15 - -
1293 32 1862 03 14 1; 45 38,4 20,5 6,6 W 3,+15 9 -
1294 32 1862 03 24 - 36,6 27,9 6,4 W 2,2+15 7 61
1295 32 1862 06 21 5; 30 36,9 24,4 7 W 7,6+15 8 61
1296 39 1862 10 - - 40 30,1 5,7 S 5+14 - -
1297 32 1862 10 04 - 40,4 19,7 6,1 W 1.1+15 9 -
1298 26, 32,39 1862 10 16 - 38,8 30,5 6,1 S 1.1+15 8 -
1299 10,38 1862 10 16 1; 10 45,7 26,6 6,4 S 2,2+15 - 150
1300 32,39 1862 11 03 - 38,4 27,7 6,6 S ,+15 9 -
1301 8, 10,11, 13,

23,30

1862 12 19 5; 00 39,7 47,9 6 S 9,3+14 - 17
1302 11, 13,20,30 1862 12 21 10; 00 29,5 52,5 6,2 S 1.4+15 8 -
1303 26, 32,39 1863 04 22 21; 30 36,4 27,7 7,8 W 4+16 10 61
1304 32, 39 1863 08 16 - 38,3 26,3 6,2 S 1.4+15 8 -
1305 10,12 1863 10 03 - 38,5 30,6 6,3 S 1.7+15 - 10
1306 10, 32,38 1863 11 06 - 40,2 26,6 6,4 S 2,2+15 8 -
1307 8 10 1863 12 30 19; 00 38,5 48 5,8 S 6,1+14 6-7 10
1308 10,20,23, 30 1863 12 30 22; 00 38,2 48,6 6,1 S 1+15 8 14
1309 10,11,13,20, 30 1864 01 17 30,7 57 6 S 9,+14 >7 -
1310 10, 32,39 1864 06 14 - 40,3 25,1 7,4 W 1,7+16 6 -
1311 39 1864 07 17 - 36,5 23,5 5,7 S 5+14 - -
1312 32,39 1864 10 02 - 36,1 29,5 6,2 S 1.4+15 7 -
1313 11, 12,13,20, 30 1864 12 07 20; 00 33,4 46 6,4 S 2,2+15 8 -
1314 10 1864 12 20 - 33,5 45,9 6,5 S 2,7E+15 - 12
1315 10 1865 02 08 - 32,6 46,4 6,1 S 1.1+15 - 18
1316 39 1865 02 23 - 39,3 26,2 6,1 S 1,1+15 - -
1317 10 1865 03 22 0; 53 42,7 73,2 6,4 S 2,2+15 - 15
1318 8,10 1865 04 27 - 44,5 29,5 6,4 S 2,2+15 8 20
1319 11, 13,20,30 1865 06 - - 29,6 53,1 6 S 9,3+14 >7 -
1320 10,24, 32, 38, 39 1865 07 23 21; 30 39,4 26,2 6,7 W 4+15 9 -
1321 32 1865 10 10 - 37,7 27,1 6 W 9,3+14 9 -
1322 32 1865 10 11 - 40,8 20 6,2 W 1.4+15 9 -
1323 32 1865 11 - 38,2 26,2 6,2 W 1,4+15 8 -
1324 32 1866 01 02 - 40,4 19,6 6,6 W ,+15 9 -
1325 39 1866 01 11 - 36,2 28 6,1 S 1.1+15 -
1326 38 1866 01 13 - 36 28 6 S 9,+14 - -
1327 39 1866 01 13 - 38,3 26,2 5,7 S 5+14 - -
1328 39 1866 01 19 - 38,3 26,2 5,7 S 5+14 - -
1329 32, 39 1866 01 31 - 36,4 25,4 6,2 S 1,4+15 8 -
1330 32, 39 1866 02 02 - 38,3 26,2 6,3 S 1JE+15 8 -
1331 32 1866 02 06 - 35,9 22,9 6,8 W 5+15 8 -
1332 32 1866 03 02 14; 30 40,3 40,9 6,7 S 4+15 9 -
1333 20 1866 05 12 - 39,2 41 7,2 S 1.2+16 - -
1334 10, 11,13,23, 1866 06 20 14; 00 38,5 40,9 6,8 S 5+15 9

39,40

bgcolor=white>S
1 2 3 4 5 6 7 8 9 10 12 13
1335 2, 3,39 1866 07 20 38,4 39,4 6,1 S 1,1+15 8 15
1336 32 1866 12 04 - 40,2 19,9 6,2 W 1,4+15 9 -
1337 32 1866 12 06 16; 00 42 23 6,6 W ,+15 6 -
1338 32 1867 01 27 - 39,6 20,8 6,2 W 1,4+15 8 -
1339 26,32 1867 02 04 4; 19 38,2 20,4 7,2 S 1,2+16 10 -
1340 33 1867 02 27 38,4 20,5 7,1 S 9,3+15 - -
1341 26, 32, 33, 39 1867 03 07 - 39,1 26,5 6,8 S 5+15 9 -
1342 39 1867 03 10 9; 00 39,3 26,2 5,7 S 5+14 - -
1343 32, 39 1867 03 29 - 41,2 24,2 6 S 9,3+14 8 -
1344 39 1867 04 11 - 39,3 26,5 5,7 S 5+14 - -
1345 10 1867 04 14 - 34 45,2 6,4 S 2,2+15 - 23
1346 39 1867 07 22 3; 00 39,3 26,2 6,1 S 1.1+15 - -
1347 2,3,5,8,10,

23

1867 07 23 12; 00 40,6 46,3 6,2 S 1.4+15 - 28
1348 32,39 1867 09 20 3; 15 36,5 22,3 7,1 W 9,3+15 9 -
1349 39 1867 10 22 20; 30 39,3 23,5 5,7 S 5+14 - -
1350 39 1868 02 18 17; 00 41,2 43,8 6,1 S 1+15 - -
1351 2, 3,10,23 1868 02 25 11; 10 41 43 6,2 S 1.4+15 - 25
1352 2,3,5, 8,10,

11, 13,23,30

1868 03 18 18; 00 40 47,4 6,3 S 1,7+15 30
1353 39 1868 04 02 3; 30 40 41,7 6,1 S 1+15 - -
1354 10 1868 04 03 21; 15 41,2 69,6 6,5 S 2,7+15 - 18
1355 38,39 1868 04 20 - 36 28 6,3 S 1,7+15 - -
1356 10,23,39 1868 04 23 3; 30 40 42 6 S 9,+14 8-9 17
1357 2,3,5, 8 10 1868 04 11 3; 30 40,3 42,1 5,7 S 5+14 8 15
1358 32, 39 1868 05 03 - 37,8 27 6 W 9,+14 7 -
1359 10,11,13,30 1868 08 01 20; 00 34,9 52,5 6,4 S 2,2+15 - -
1360 10 1868 08 29 8; 00 42,7 75,9 6,4 S 2,2+15 - 20
1361 32, 39 1868 10 03 23; 30 39,2 23,4 6,2 S 1,4+15 8 -
1362 8,10,38 1868 11 13 6; 50 45,7 26,6 5,8 S 6+14 6 100
1363 10,38 1868 11 27 20; 30 45,7 26,6 6,4 S 2,2+15 - 150
1364 32 1869 - - - 36,5 27,6 6,7 W 4+15 9 -
1365 39 1869 04 18 4; ∞ 36,6 27,8 6,1 S 1+15 - -
1366 32 1869 08 14 - 40,2 19,7 6,1 W 1+15 9 -
1367 32 1869 09 01 - 41,2 19,6 6,2 W 1,4+15 8 -
1368 32, 39 1869 12 01 18; 00 37 28,1 6,8 W 5+15 9 -
1369 39 1869 12 12 0; 33 40,7 44,3 6,1 S 1+15 - -
1370 32 1869 12 28 3; 10 38,8 20,7 6,6 W 3,+15 10 -
1371 39 1870 02 22 - 37,5 22,3 6,1 S 1+15 - -
1372 10, 12, 32,38, 39 1870 02 22 - 36,6 28,5 6,8 S 5+15 8
1373 39 1870 07 11 2; 40 38,4 27,2 6,1 S 1+15 - -
1374 12,16,32,33, 39 1870 08 01 0; 41 38,5 22,5 6,8 5+15 9 -
1375 16 1870 08 01 13; 33 38,5 22,4 6,3 S 1,7+15 - -
1376 32 1870 09 28 5; 00 41,1 19,6 6,4 W 2,2+15 9 -
1377 26, 32 1870 09 30 23; 00 38,5 22,5 7,5 S 2,2+16 10 -
1378 39 1870 08 10 11; 10 39,9 27,3 5,7 S 5+14 - -
1379 16 1870 10 25 18; 57 38,5 22,5 6 S 9,3+14 - -
1380 2,3, 10,11,

13,23

1871 03 17 - 38 43 6,7 S 4+15
1381 32 1871 04 09 - 39,5 20,1 6 W 9,+14 8 -

1 2 3 4 5 6 7 8 9 10 11 12 13
1382 39 1871 06 07 36,8 28,2 5,7 S 5+14
1383 11, 13,20 1871 08 04 - 30,7 56,9 6 S 9,+14 >7 -
1384 39 1871 10 08 11; 10 38,4 26,1 6,1 S 1+15 - -
1385 39 1871 10 11 - 40,4 26,7 5,7 S 5+14 - -
1386 39 1871 12 02 13; 45 39,9 43,1 6,1 S 1+15 - -
1387 8, 10, 11, 13, 1871 12 23 - 37,3 58,3 7,2 S 1,2+16 9 11

17, 20, 23, 26,

30

1388

1389

8, 10, 20, 23, 26

8, 10, 23, 26

1872

1872

01

01

06

28

7; 00 37,3

40,6

58,3

48,7

6,3

6

S

S

1,7+15

9,3+14

8-9

8,5

7
1390 32 1872 02 11 20; 00 39,7 20,2 6,2 W 1,4+15 9 -
1392 39 1872 03 06 - 37,8 26,8 5,7 S 5+14 - -
1393 10,12, 26, 32,

39

1872 04 02 7; 45 36,3 36,1 7,5 S 2,2+16 9 -
1394 39 1872 05 15 - 36,2 36,1 5,7 S 5+14 - -
1395 10,11,13,20,30 1872 06 - - 34,6 47,5 6,1 S 1+15 8 -
1396 39 1872 07 23 - 41 24,4 6,1 S 1+15 - -
1397 10 1873 - - - 40,5 37,8 5,8 S 6+14 - 15
1398 32, 39 1873 01 31 23; 13 37,8 27,1 6,6 W 3,+15 8 -
1399 39 1873 02 01 1; 00 37,8 27 6,7 S 4+15 - -
1400 10 1873 02 14 - 33,2 34,6 6,2 S 1,4+15 - 32
1401 32, 39 1873 07 25 9; 30 37,7 23,2 6 S 9,3+14 7 -
1402 32 1873 10 25 22; 00 37,9 21 6,1 W 1+15 8 -
1403 10, 38, 39 1873 11 09 0; 00 40,5 25,6 5,8 S 6+14 - 15
1404 39 1874 01 17 1; 45 38,3 23,8 5,7 S 5+14 - -
1405 10 1874 01 18 15; 00 42,9 77,4 5,9 S 7,6+14 - 20
1406 32, 39 1874 03 18 5; 00 38,5 23,9 6 S 9,3+14 8 -
1407 10, 12, 23, 39,

40,41

1874 05 03 7; 00 38,5 39,5 7,1 S 9,3+15 - 14
1408 26, 39 1874 05 04 - 38,6 39 6,1 S 1+15 - -
1409 39 1874 06 28 - 37,8 26,8 5,7 S 5+14 - -
1410 39 1874 07 05 - 39,2 26,3 5,7 S 5+14 - -
1411 32 1874 11 16 - 36,4 27,8 7 W 7,6+15 7 -
1412 39 1874 11 16 6; 00 38,4 27,2 6,1 S 1+15 - -
1413 39 1874 11 18 5; 00 39,1 26,9 5,7 S 5+14 - -
1414 10,38 1875 03 - - 40,2 26,4 5,8 S 6+14 - 15
1415 10, 23,40 1875 03 03 22; 48 38,5 39,5 6,7 S 4+15 9 -
1416 39 1875 03 05 - 40,2 26,4 5,7 S 5+14 - -
1417 11, 13,30 1875 03 21 15; 00 30,5 50,5 5,7 S 5+14 - -
1418 2,3,12, 39,41 1875 03 27 - 38,5 39,5 6,7 S 4+15 - -
1419 11, 13,20, 30 1875 05 - - 31,2 56,3 6 S 9,+14 >7 -
1420 10, 12, 26, 32,

38,39

1875 05 07 - 38,1 30,1 7,3 S 1.4+16 9 -
1421 10, 39 1875 05 11 - 38 29 7 S 7,6+15 - 40
1422 39 1875 05 11 5; 00 38,4 21,2 5,7 S 5+14 - -
1423 32,39 1875 07 - - 37,7 26,7 6,3 S 1/7+15 8 -
1424 39 1875 08 21 - 36,2 36,1 5,7 S 5+14 - -
1425 14 1875 10 02 11; 00 16,5 38 6,1 S 1+15 - -
1426 32, 39 1875 10 03 - 40,2 26,4 6,8 S 5+15 9 -
1427 39 1875 11 01 - 38,6 26,5 5,7 S 5+14 - -
1428 10,23, 32,39 1875 11 01 10; 00 39,9 41,3 7,4 S 1,7+16 10 -

1 2 3 4 5 6 7 8 9 10 11 12 13

bgcolor=white>-
1429 32,39 1876 05 13 6; 00 38,8 30,5 6,8 S 5+15 9 -
1430 16, 32, 39 1876 07 26 - 37,8 22,8 6 S 9.3+14 8 -
1431 1113,30 1876 09 28 3; 00 33,1 49,7 5,8 S 6,1E+14 - -
1432 11,13,20,30 1876 10 20 15; 00 35,8 50,2 5,7 S 5+14 7 -
1433 39 1877 07 02 9; 45 38 22,8 5,7 S 5+14 - -
1434 32 1877 10 13 - 37,7 27 6 W 9.3+14 8 -
1435 10,32,38, 39 1877 10 13 - 40,6 27,6 6,2 S 1,4+15 8 -
1436 10,26,32,38, 39 1878 04 19 19; 00 40,7 29,4 6,8 S 5+15 9
1437 8 10 1878 05 04 - 41,6 48,1 5,7 S 5+14 7 20
1438 2,18,10,11,

12,13,20,23, 30

1879 03 22 3; 42 37,8 47,9 6,7 S 4+15 >8
1439 8,10,23,26 1879 04 02 - 37,5 57,4 6,7 S 4+15 9 15
1440 39 1879 07 03 14; 15 38,3 22,8 5,7 S 5+14 - -
1441 10,23 1879 10 09 19; 30 41,1 37,9 6 S 9.3+14 7 25
1442 39 1880 01 - 39,3 23 5,7 S 5+14 - -
144' 39 1880 03 28 - 42 35,2 6,1 S l,lb+15 - -
1444 39 1880 07 22 - 38,1 27,8 6,1 S 1,1+15 - -
1445 12,24,26, 32, 39 1880 07 29 4; 40 38,6 27,1 6,7 S 4+15 9
1446 20 1880 08 - - 27 57,2 5,4 S 2.6+14 >7 -
1447 39 1880 09 02 13; 00 38 22 5,7 S 5+14 - -
1448 10, 38 1880 11 09 6; 33 45,9 16,1 6,8 S 5+15 - 22
1449 10 1880 12 01 23; 30 43,1 76,9 5,7 S 5+14 - 14
1450 8,10,38 1880 12 25 14; 30 45,7 26,6 6,2 S 1.4+15 7 150
1451 26,32,33,39 1881 04 03 11; 30 38,3 26,1 7,4 S 1.7E+16 11 -
1452 2,3,23, 32, 39 1881 05 30 - 38,5 43,3 6,8 S 5+15 9 -
1453 2,3,10 1881 06 07 - 38,6 42,8 6,3 S 1,7E+15 - 16
1454 10,26,32, 39 1881 09 28 - 40,6 33,6 6,1 S 1.1+15 8 -
1455 10 1882 01 01 - 37 79,5 7 S 7.6+15 - -
1456 39 1882 03 21 - 38,4 26,1 5,7 S 5+14 - -
1457 21 1882 12 15 - 24,9 72,7 5,7 S 5+14 - -
1458 10,21 1883 03 31 2; 00 36,5 70,5 6,5 S 2,7E+15 - 150
1459 , 13, 17,20, 30 1883 04 28 17; 00 36,9 56,3 5,8 S 6+14 >7
1460 10, 11,13,20,

23,30

1883 05 03 - 38,8 47,1 6,2 S 1.4+15 8
1461 39 1883 07 25 23; 00 37,5 24,5 5,7 S 5+14 - -
1462 39 1883 08 05 1; 30 37,5 24,5 5,7 S 5+14 - -
1463 26, 32,39 1883 10 15 15; 30 38,3 26,4 6,5 S 2.7+15 9 -
1464 11,13,20,30 1883 10 16 - 27,7 52,2 5,8 S 6.1+14 >7 -
1465 39 1883 11 01 - 38,3 26,3 6,1 S 1.1+15 - -
1466 39 1883 11 03 6; 00 40,6 43,1 6,1 S 1+15 - -
1467 10,20,23,39 1884 02 10 5; 00 37,5 42,5 6,9 S 6+15 8 -
1468 10 1884 03 13 5; 07 42,7 78,2 5,8 S 6+14 - 20
1469 39 1884 05 13 - 40,4 27,8 5,7 S 5+14 - -
1470 39 1884; 06 06 - 36,3 37,2 5,7 S 5+14 - -
1471 14 1884 07 20 9; 30 15,7 39,6 6,2 S 1,4+15 - -
1472 39 1884 10 - - 38,4 27,2 5,7 S 5+14 - -
1473 24, 39 1885 02 29 18; 30 37,2 27,2 6,8 S 5+15 9 -
1474 32 1885 03 29 18; 30 37 21,9 6,1 W 1.11+15 9 -

bgcolor=white>1509
1 2 3 4 5 6 7 8 9 10 11 12 13
1475 10 1885 08 02 21; 20 42,7 74,1 6,9 S 6,1+15 15
1476 39 1885 08 22 20; 30 38,8 23,5 5,7 S 5+14 - -
1477 32,33 1886 08 27 21; 32 37 21,5 7,5 S 2,2+16 10 -
1478 39 1886 09 04 - 39,3 26,5 5,7 S 5+14 - -
1479 39 1886 10 06 - 39,6 28,9 6,1 S 1,1+15 - -
1480 8,10,23 1886 10 16 8; 35 43,5 45,9 5,8 S 6,1+14 6-7 30
1481 10 1886 11 - - 38,3 29,3 5,8 S 6,1+14 - 15
1482 39 1886 11 27 8; 05 38,3 26,1 5,7 S 5+14 - -
1483 10 1886 11 29 4; 13 41,4 69,5 6,7 S 4+15 - 26
1484 39 1886 12 11 - 38,4 26,1 6,1 S 1+15 - -
1485 39 1887 01 - - 37,8 29,1 5,7 S 5+14 - -
1486 10, 32, 39 1887 05 14 5; 30 40,2 25,2 6,7 S 4+15 7 -
1487 10,41 1887 06 08 23; 35 43,1 76,8 7,3 S 1,4+16 - 20
1488 39 1887 07 07 17; 45 42,1 42 5,7 S 5+14 - -
1489 32, 39 1887 07 17 7; 45 35,7 26 7,5 W 2,2+16 7 61
1490 39 1887 08 06 - 36,9 28,7 6,1 S 1.1+15 - -
1491 10 1887 08 21 21; 00 43,1 76,8 5,7 S 5+14 - 20
1492 12 1887 09 30 - 38,7 29,8 6,3 S 1,7E+15 - -
1493 16, 32, 39 1887 10 03 22; 50 38,3 22,8 6,4 S 2,2+15 - -
1494 39 1888 05 - - 38,4 26,1 6,1 S 1+15 - -
1495 39 1888 05 - - 39,8 39,5 6,1 S 1,1+15 - -
1496 16, 32, 39 1888 09 09 - 38,1 22,1 6,2 S 1,4+15 9 -
1497 26 1888 09 22 10; 00 41,3 43,3 6,1 S 1+15 8 -
1498 4,5, 8, 39 1888 09 23 12; 30 41,1 42,8 6,1 S 1+15 - -
1499 39 1888 10 - - 38,2 28 6,1 S 1+15 - -
1500 10 1888 11 14 - 44,8 78,5 5,7 S 5+14 - 20
1501 10,21 1888 11 28 6; 40 40 69,8 6,3 S 1.7+15 8 20
1502 10 1888 11 29 - 44,9 75,1 6,1 S 1+15 - 30
1503 10 1889 - - - 38 77,5 7 S 7,6+15 - -
1504 8, 10,23 1889 06 26 12; 45 42,5 48 6,1 S 1+15 - 50
1505 10 1889 07 11 22; 14 43,2 78,7 8,3 S 12+17 - 40
1506 10 1889 07 18 20; 30 42,8 74,9 5,8 S 6+14 - 20
1507 8, 10 1889 07 19 - 40,1 53,1 5,7 S 5+14 7-8 15
1508 10 1889 08 - - 37,7 75,2 6 S 9,3+14 - -
32 1889 08 25 19; 10 38,3 20,1 7 W 7,6+15 8 61
1510 26, 32,39 1889 10 25 22; 56 39,2 25,8 6,7 S 4+15 9 -
1511 39 1889 11 03 - 39,3 26,3 6,1 S 1+15 - -
1512 10 1890 02 25 17; 30 43 78 6,4 S 2,2+15 - 40
1513 39 1890 03 09 - 36,8 27,3 5,7 S 5+14 - -
1514 11, 13,20, 30 1890 03 25 - 28,8 53,7 6,4 S 2,2+15 8 -
1515 32 1890 05 20 - 38,5 25,5 6,2 W 1,4+15 7 -
1516 32, 39 1890 05 26 - 39,9 38,8 6,8 S 5+15 9 -
1517 32, 39 1890 05 26 - 38,5 25,5 6,2 W 1,4+15 8 -
1518 8,10,11,12,

20, 23,26, 30

1890 07 11 0; 55 36,6 54,6 7,2 S 1,2+16 9 -
1519 32, 39 1890 12 14 - 37,8 27,5 6,1 S 1+15 8 -
1520 2, 3,10,23, 38 1891 04 03 - 39,1 42,5 6 S 9,3+14 - 13
1521 32, 39 1891 05 11 - 37,5 24,5 6,4 S 2,2+15 8 -
1522 32 1891 06 27 - 39 20,7 6 W 9,+14 7 -
1523 39 1891 09 18 4; 00 39,3 23 6,1 S 1+15 - -
1524 39 1892 01 09 6; 15 39,8 22,3 6,1 S 1+15 - -
1525 10 1892 09 18 20; 46 40,7 66,5 6,1 S 1+15 - 28

1 2 3 4 5 6 7 8 9 10 11 12 13
1526 10, 38 1892 10 14 5; 55 44,5 28 6,8 S 5+15 70
1527 8, 10 1892 10 24 9; 45 39,9 53,1 5,7 S 5+14 7-8 15
1528 12,41 1892 12 19 - 30,9 66,5 6,9 S 6,1+15 - -
1529 39 1892 12 27 18; 30 37,8 27 5,7 S 5+14 - -
1530 10, 38, 39 1893 01 28 0; 00 40,5 25,6 5,8 S 6+14 - 15
1531 26 1893 01 31 2; 30 37,7 20,9 6,4 S 2,2+15 10 -
1532 26,32, 33 1893 02 09 18; 00 40,4 25,5 6,5 S 2,7E+15 9 -
1533 32,39 1893 03 02 - 37,9 26,9 6,6 W .+15 7 -
1534 12,40 1893 03 12 22; 51 38 38,3 7,1 S 9,+15 9 -
1535 10,23,26, 39 1893 03 31 - 38,3 38,5 7 S 7.6+15 - 21
1536 10, 38 1893 04 08 13; 00 44 21,3 6,8 S 5+15 - 17
1537 26, 32 1893 04 17 - 37,9 20,9 6,5 S 2,7E+15 9 -
1538 16, 32, 39 1893 05 23 22; 02 38,3 23,4 6,2 S 1.4+15 8 -
1539 26, 32 1893 07 14 - 40,1 19,8 6,4 W 2,2+15 9 -
1540 10,39 1893 07 24 0; 00 41,7 26,6 5,8 S 6+14 - 15
1541 8, 10, 38 1893 08 17 14; 45 45,7 26,6 6,1 S 1.1+15 7 100
1542 8, 10, 38 1893 09 10 3; 42 45,7 26,6 6,1 S 1+15 7 100
1543 10 1893 11 04 4; 28 42,7 75,8 6 S 9.3+14 - 15
1544 10,21 1893 11 05 3; 30 39,5 69,4 5,9 S 7.6+14 7 40
1545 10,11,13,17,

20, 23,30

1893 11 17 15; 06 37,1 58,4 7,1 S 9,+15 9-10 16
1546 10 1893 11 17 15; 06 37,2 58,4 6,6 S .+15 - 11
1547 1113,20, 30 1894 02 26 - 29,5 53,3 5,9 S 7,6+14 >7 -
1548 8,10,38 1894 03 04 6; 35 45,7 26,6 5,8 S 6.1+14 6-7 100
1549 39 1894 03 26 15; 30 38,3 22,8 5,7 S 5+14 - -
1550 16, 32,39 1894 04 20 16; 52 38,6 23 6,7 W 4+15 10 -
1551 12,16,26, 32,

33, 39.41

1894 04 27 19; 21 38,7 23 7,2 W 1,2+16 9
1552 10 1894 05 14 - 36,6 35,6 6,1 S 1+15 - 30
1553 10, 32, 38,39 1894 07 10 12; 30 40,6 28,7 6,7 S 4+15 10 -
1554 8, 10, 38 1894 08 31 12; 20 45,7 26,6 6,5 S 2.7E+15 8 150
1555 39 1895 - - - 38,6 27,1 6,1 S 1+15 - -
1556 8,10, 1113,

17,20,23, 30

1895 01 17 11; 30 37,1 58,4 6,8 S 5+15 >8 -
1557 32 1895 05 13 23; 00 40,1 19,8 6,2 W 1,4+15 9 -
1558 32 1895 05 14 - 39,4 20,5 6,2 W 1.4+15 8 -
1559 9, 10,21 1895 07 05 - 37,7 75,1 7 S 7,6+15 8 -
1560 8, 10, 11, 13,

17,23, 30

1895 07 08 21; 30 39,5 53,7 8,2 S 9.3+16 10 60
1561 10,21 1895 08 04 8; 00 37,8 75,2 6,4 S 2.2+15 8 20
1562 32, 39 1895 08 19 - 37,8 27,8 6,7 S 4+15 9 -
1563 39 1895 11 14 - 39,1 27,1 6,1 S 1+15 - -
1564 10,21 1895 12 18 13; 40 40 73 6 S 9.3+14 7 35
1565 10,11,13,20,

23,30

1896 01 04 18; 28 37,7 48,3 6,7 S 4+15 >8 -
1566 23 1896 01 05 6; 21 37,6 48,3 6 S 9,+14 8 15
1567 10 1896 01 15 18; 40 41,5 70,9 6,6 S 3,+15 - 23
1568 10,21 1896 03 04 5; 05 37 76 7,1 S 9,+15 8 40
1569 8, 10, 38 1896 03 11 23; 30 45,7 26,6 5,8 S 6+14 6 100
1570 10,38,39 1896 04 16 0; 00 39,3 29,2 5,7 S 5+14 - -
1571 39 1896 06 26 - 36,8 28,3 5,7 S 5+14 - -
1572 10,15,39 1896 06 29 - 34,5 33,3 6,9 S 6+15 - 30

bgcolor=white>30
1 2 3 4 5 6 7 8 9 10 11 12 13
1573 8,23 1896 09 22 3; 53 41,6 45 6,3 S 1,7E+15 7,5
1574 10,21 1896 09 23 23; 20 37 71 7,5 S 2,2+16 6 160
1575 32 1896 09 28 - 41,1 20,7 6, 1 W 1,1+15 8 -
1576 32, 39 1896 10 27 - 36,6 27,9 6,7 W 4+15 7 -
1577 10,21 1896 11 01 5; 01 39,7 75,9 6,6 S ,+15 8 25
1578 39 1896 12 28 5; ∞ 37 22,3 5,7 S 5+14 - -
1579 11,13,20, 30 1897 01 10 23; 30 27 56,3 6,1 S 1.1+15 8 -
1580 32 1897 01 17 - 39,9 20 6,2 W 1,4+15 9 -
1581 39 1897 05 07 - 36,8 28,3 5,7 S 5+14 - -
1582 11,13,20 1897 05 27 21; 07 30,6 57 5,7 S 5+14 - -
1583 32 1897 05 28 22; 35 37,5 22,5 7,5 W 2,2+16 7 61
1584 10,21 1897 09 17 15; 10 39,8 68,4 6,6 S ,+15 8 25
1585 10,21 1897 09 17 17; 19 39,9 68 6,7 S 4+15 7 45
1586 39 1897 12 - - 39,6 27,9 6,1 S 1,1+15 - -
1587 39 1898 02 28 - 39,6 27,9 6,1 S 1,1+15 - -
1588 32 1898 06 02 21; 40 37,6 22,5 7 W 7,6+15 7 61
1589 9, 10,21 1898 06 22 - 39,7 76,7 6,1 S 1+15 8 15
1590 26,32 1898 07 31 5; 40 39,6 20,7 6,3 S 1,7E+15 8 -
1591 26 1898 11 17 15; 06 37,2 58,4 6,6 S ,+15 -
1592 32 1899 01 22 9; 56 37,2 21,6 6,5 W 2JE+15 9 -
1593 10,12,26,32,

38,411

1899 09 20 2; 12 37,9 28,8 6,9 S 6,1+15 - -
1594 2,3 8 10,11,

12 13,23,26,

32,39

1899 12 31 10; 50 41,6 43,6 6,3 S 1,7E+15 8,5 8
1595 1,10,15 1900 1 5 0; 55 34 34 6 S 9,3+14 - 13
1596 10 1900 2 6 15; 09 38,1 31,3 5,7 N 5+14 - -
1597 14 1900 3 6 17; 58 29 33 6,2 S 1,4+15 - -
1598 10,32 1900 7 12 6; 25 40,3 43,1 5,9 S 7,6+14 8 -
1599 10,26,29 1901 3 31 7; 12 43,4 28,5 6,7 S 4+15 - 20
1600 10,29, 38 1901 4 2 17; 17 45,5 20,7 5,8 S 6+14 - 15
1601 29 1901 5 24 4; 02: 35,5 26,5 5,8 S 6+14 - -
1602 10, 38 1901 7 30 3; 30 43,4 28,7 6 S 9,+14 - 14
1603 10,29 1901 11 8 10; 18 40,1 41,5 6,1 S 1+15 - 14
1604 29,32 1901 12 18 3; 51 39,4 26,7 5,9 S 7,6+14 8 15
1605 32, 38 1901 12 24 23; 18 37,4 22 5,8 S 6,1+14 7 -
1606 8,10, 29, 30 1902 2 13 9; 39 40,7 48,6 6,9 S 6,1+15 8-9 15
1607 32,38 1^ 4 11 18; 35 38,6 23,4 5,8 S 6+14 - 24
1608 10,21 1902 4 17 21; 10 40 71 5,8 S 6,1+14 7 30
1609 29 1902 5 26 4; 21 37,8 31,7 5,8 S 6,1+14 - -
1610 10,29,32,33, 38 1902 7 5 14; 56 40,8 23,1 6,5 S 2,7E+15 10 -
1611 13, 14, 30 1902 7 9 3; 38 27,1 56,3 6,4 S 2,2+15 - -
1612 10, 21 1902 8 12 17; 16 39,5 68,5 6 S 9,+14 7 35
1613 9, 10,21 1902 8 22 3; 01 39,8 76,2 7,8 S 4+16 - 40
1614 10 1902 8 22 15; 00 39,8 76,2 6,1 S 1,1+15 - 40
1615 10 1902 8 22 17; 50 39,8 76,2 6 S 9,+14 - 40
1616 10 1902 8 24 1; 30 39,8 76,2 6,4 S 2,2+15 - 30
1617 10 1902 8 28 18; 30 39,8 76,2 5,7 S 5+14 - -
1618 10, 21 1902 8 30 21; 50 37 71 6,8 S 5+15 7 33
1619 10 1902 9 15 - 39,8 76,2 6 S 9,3+14 - 40
1620 10 1902 9 16 11; 40 39,8 76,2 6,2 S 1,4+15 - 30

1 2 3 4 5 6 7 8 9 10 11 12 13
1621 10 1902 9 18 16; 45 39,8 76,2 5,9 S 7.6+14
1622 10,21 1902 9 20 6; 32 38,5 67 6,2 S 1.4+15 7 40
1623 10,21 1902 10 6 9; 15 36,5 70,5 7,3 S 1.4+16 - 200
1624 10 1902 12 16 5; 07 40,8 72,3 6,4 S 2,2+15 - 9
1625 10 1902 12 19 14; 50 39,8 76,2 6,2 S 1.4+15 - 30
1626 10 1903 2 4 21; 00 40 78 6,1 S 1,1 +15 - 30
1627 32, 38 1903 3 15 19; 03 37,8 21,2 5,7 S 5+14 - 18
1628 3, 10,13 1903 3 22 14; 35 33,2 59,7 6,2 S 1,4+15 - 16
1629 30 1903 3 24 16; 56 37,5 49 5,9 S 7.6+14 - -
1630 10 1903 28 8; 55 40,8 72,7 6,1 S 1+15 - 14
1631 1,31 1903 3 29 22; 30 32,2 35,5 5,7 S 5+14 8 10
1632 29, 36 1903 3 30 - 35,2 33,2 6 S 9.3+14 - -
1633 10,21 1903 4 19 13; 25 37 71 6,9 L 6.1+15 - 160
1634 10,1113,29 1903 4 28 23; 39 39,1 42,6 7 S 7.6+15 9 -
1635 10,29, 32 1903 5 26 6; 09 40,7 29 5,9 S 7.6+14 6 20
1636 32 1903 5 28 3; 58 40,9 42,7 5,8 S 6+14 8 -
1637 10, 38 1903 5 29 9; 34 39,8 18,7 6 S 9,+14 - 30
1638 10,13 1903 6 24 16; 56 37,5 49 5,9 S 7,6+14 - -
1639 10, 14, 32, 38 1903 7 19 18; 07 35 30 5,7 S 5+14 7 -
1640 10, 38 1903 8 2 - 36,5 22,5 6 S 9.3+14 - 20
1641 29 1903 8 6 3; 49 39,5 42,4 5,8 S 6+14 - -
1642 14,29,32,33,38 1903 8 11 4; 32 36 22,8 7,9 W 5+16 11 80
1643 8, 10,29,38 1903 9 13 8; 02 44,8 26,7 6,2 S 1.4+15 6-7 50
1644 10, 32, 38 1903 9 19 18; 51 37,8 20,8 6 S 9.3+14 - 20
1645 10, 13, 23, 30 1903 9 25 1; 20 35,2 58,2 6,4 S 2,2+15 8,5 14
1646 10 1903 10 19 3; 10 39,3 74,5 6,2 S 1,4+15 - 25
1647 10,21 1904 2 4 21; 00 40 78 6,1 S 1+15 7 30
1648 10, 29, 38 1904 2 6 2; 49 45,7 26,6 6,3 S 1,7+15 - 62
1649 7, 8,10 1904 3 20 9; 59 36,6 59,4 5,7 S 5+14 8 11
1650 10,29, 32, 38 1904 4 4 10; 02 41,8 23 7,1 W 9.3+15 9 -
1651 12,29, 32, 38 1904 4 4 10; 25 41,8 23,1 7,7 S .+16 10 -
1652 10,29, 32, 38 1904 4 10 9; 55 42,4 22,8 6,5 S 2,7E+15 - 31
1653 32 1904 4 13 18; 14 42 23,1 5,9 W 7,6+14 7 -
1654 10, 29, 32, 38 1904 4 19 8; 52 42,7 22,7 6,5 W 2,7+15 7 -
1655 29, 32,38 1904 8 11 6; 08 37,7 26,9 6,9 W 6+15 10 10
1656 29, 32, 38 1904 8 18 20; 07 38 27 5,9 S 7,6+14 7 -
1657 29,32,38 1904 10 10 17; 40 38,4 27,2 5,8 S 6+14 7 -
1658 7, 10, 13, 30 1904 11 9 3; 28 36,6 59,4 6,3 S 1.7+15 - 28
1659 3, 10, 13 1905 1 9 6; 17 37 48,7 6,2 S 1,4+15 - 19
1660 10 1905 1 9 23; 05 48,6 17,5 5,7 S 5+14 - 10
1661 32 1905 1 20 2; 32 39,6 23 6,3 W 1,7+15 10 -
1662 30 1905 2 3 3; 00 41,1 42,7 6,8 S 5+15 - -
1663 10,21 1905 3 14 10; 42 40 76 6 S 9,3+14 7 30
1664 10 1905 4 4 9; 50 33 76 8,1 S 7,6+16 - 25
1665 10, 38 1905 4 15 5; 36 40,2 29 6 S 9,+14 - 6
1666 13,14, 30 1905 4 25 14; 01 27,7 56 5,8 S 6+14 - -
1667 29, 32 1905 4 30 10; 01 38,8 28,5 6,4 W 2,2+15 8 -
1668 12, 29, 38 1905 6 1 4; 42 42 19,5 6,6 S ,+15 - 18
1669 13,30 1905 6 19 1; 27 29,9 60 6 S 9,3+14 - -
1670 29, 32, 38 1905 8 4 5; 09 42,1 19,6 5,9 S 7,6+14 7 -
1671 29 1905 9 8 1; 43 38,8 16,1 7,3 S 1.4+16 - -
1672 10, 29, 32, 38 1905 10 8 7; 27 42 23 6,4 S 2,2+15 10 33

bgcolor=white>13
1 2 3 4 5 6 7 8 9 10 11 12 13
1673 29 1905 10 21 11; 01 43,3 41,7 6,4 S 2,2+15 7 35
1674 10, 32 1905 10 22 3; 55 40,6 28,3 5,9 S 7,6+14 5 30
1676 10,32,38 1905 11 8 22; 06 40,3 24,4 7,5 S 2,2+16 10 -
1677 110,12,29 1905 12 4 7; 04 38,1 38,6 6,8 S 5+15 9 18
1678 110,29, 36 1905 12 4 9; 40 38 38,3 5,8 S 6+14 - -
1679 36 1905 12 4 12; 00 37,5 37,5 6,6 S ,+15 -
1680 10, 29,38 1906 1 2 4; 26 45,9 16,1 6, 1 S 1+15 - -
1681 8, 10 1906 2 20 20; 54 41,5 48,4 5,9 S 7,6+14 6 75
1682 26, 38 1906 3 1 17; 45 41,1 20 6,5 S 2,7E+15 - 15
1683 10 1906 8 13 18; 45 44,7 79,6 5,7 S 5+14 - 17
1684 32, 38 1906 9 28 2; 30 40,9 20,7 7,9 W 5+16 8 -
1685 30, 32 1906 9 28 5; 50 40,5 42,7 6,2 S 1,4+15 8 -
1686 10,21 1^ 10 4 6; 52 37,2 67,3 5,7 S 5+14 7 20
1687 32 1906 10 8 7; 27 41,8 23,1 6,5 W 2,7E+15 7 -
1688 10,21 1906 10 24 15; 39 36,5 68 6,8 S 5+15 8 32
1689 2, 3,29, 30 1906 12 28 - 40,5 42 6 S 9,+14 8-9 15
1690 14 1907 2 2 9; 40 33 21 5,8 S 6+14 - -
1691 3, 10 1907 3 29 20; 57 34,7 60,2 6,1 S 1+15 - 33
1692 30 1907 3 31 14; 12 30 50 6 S 9,+14 - -
1693 7,10 1907 4 13 17; 57 36,5 70,5 6,7 S 4+15 - 260
1694 3,10,13 1907 4 17 8; 36 37,7 57,9 5,8 S 6+14 - -
1695 13, 14, 30 1907 7 4 9; 12 27,2 56,3 5,7 S 5+14 - -
1696 10, 38 1907 8 1 10; 05 43,1 17,9 5,7 S 5+14 - 12
1697 32, 38 1907 8 16 13; 30 41,1 20, 1 6,2 S 1,4+15 10 13
1698 10 1907 9 15 17; 46 40,3 72,5 5,8 S 6+14 - 10
1699 7,10,21 1907 10 21 4; 23 38,5 67,9 7,4 S 1,7+16 9 35
1700 10,21 1907 10 21 4; 44 38,7 68, 1 7,3 S 1,4+16 9 24
1701 29 1907 10 23 20; 28 38 16,1 5,9 S 7,6+14 - -
1702 7, 8,10, 21 1907 10 23 20; 25 37,8 65,8 6,1 S 1+15 7 30
1703 10,21 1907 10 27 5; 17 38,8 68,4 6,2 S 1,4+15 8 24
1704 8,10 1907 11 2 22; 15 38,5 66,5 5,8 S 6+14 7 20
1705 10, 21 1907 12 25 22; 36 36,5 70,5 7 S 7,6+15 7 240
1706 1 1908 2 1 - 37,6 34,5 6,3 S 1,7E+15 8 -
1707 23 1908 2 9; 39 40,7 48,5 6,9 S 6+15 8,5 18
1708 10,29,32 1908 2 17 3; 00 37,4 35,8 6 S 9,3+14 8 -
1709 10 1908 3 12 19; 26 36,5 70,5 6,4 S 2,2+15 - 200
1710 10, 21 1908 4 16 17; 38 36,5 70,5 6,7 L 4+15 - 220
1711 32,38 1908 5 17 12; 30 35,5 24 6,7 S 4+15 5 80
1712 3,10, 29 1908 9 28 6; 28 38,5 39,2 6,1 S 1+15 - 32
1713 8, 10, 29, 38 1908 10 6 21; 39 45,8 26,5 6,8 S 5+15 8 150
1714 10, 21 1908 10 23 20; 14 36,5 70,5 6,9 L 6+15 - 220
1715 10, 21 1908 10 24 21; 16 37 70 7,1 S 9,3+15 - 220
1716 10,29,32, 38 1909 1 19 4; 57 38 26,5 6 S 9,3+14 9 60
1717 10,12.29,30 1909 1 23 2; 48 33,4 49,1 7,4 S 1,7+16 - 20
1718 10,12,29,32 1909 2 9 11; 24 40 38 6,3 S 1,7+15 9 60
1719 10,29,32 1909 2 9 14; 38 40 38 5,8 S 6+14 7 -
1720 10,29 1909 2 10 19; 49 40 38 5,7 S 5+14 - 15
1721 10,29, 32,38 1909 2 15 9; 34 42,5 26,4 5,9 S 7,6+14 7 -
1722 10,29, 32,38 1909 2 15 14; 07 42,5 26,5 5,7 S 5+14 7 -
1723 10,29,32 1909 2 16 14; 14 39 37 5,7 S 5+14 7 -
1724 32 1909 2 22 19; 49 40 38 5,7 S 5+14 7 -
1725 32 1909 4 11 4; 02 36 45 5,6 S 4+14 7 -

2 3 4 5 6 8 9 10 11 12

2 3 4 5 6 7 8 9 10 11 12

2 3 4 5 6 8 9 10 11 12

bgcolor=white>8
1 2 3 4 5 6 7 8 9 10 11 12 13
1726 16,29, 32, 38 1909 5 30 6; 14 38,4 22,2 6,2 S 1,4+15 8
1727 29, 32, 38 1909 6 15 23; 30 39,1 22,2 5,7 S 5+14 7 -
1728 10,21 1909 7 7 21; 37 36,5 69 8 L 6+16 7 230
1729 29, 32, 38 1909 7 15 0; 34 37,9 21,5 5,7 S 5+14 10 4
1730 38 1909 10 8 9; 59 45,4 16,2 6 S 9,+14 - 10
1731 10, 12 1909 10 20 23; 41 30 68 7,1 S 9,+15 - 33
1732 10,29 1909 10 29 17; 38 40,3 29,6 5,8 S 6,1+14 - 15
1733 10 1909 10 30 17; 36 42,4 48 5,8 S 6,1+14 - 40
1734 14, 32, 38 1910 2 18 5; 09 35,7 24 5,7 S 5+14 8 90
1735 29 1910 6 7 2; 04 40,9 15,4 5,9 S 7,6+14 - -
1736 10,29, 32 1910 6 25 19; 26 41 34 6,2 S 1,4+15 8 -
1737 9,10 1910 7 12 7; 36 37 76 6,9 S 6+15 - 120
1738 29 1910 8 21 16; 35,5 27,5 6,8 S 5+15 - -
1739 32, 38 1910 8 21 17; 14 34,4 27 6 S 9,+14 8 60
1740 30 1910 12 4 14; 02 39,3 48 5,7 S 5+14 - 37
1741 7, 10,21 1911 1 1 10; 17 36,5 66,5 6,7 S 4+15 7 50
1742 7,10,21 1911 1 1 14; 59 36,5 66,5 6,3 S 1,7+15 7 20
1743 7,10,4-1 1911 1 3 23; 25 42,9 76,9 8,2 S 9,3+16 - 25
1744 10,21 1911 2 18 18; 41 38,2 72,8 7 S 7,6+15 9 26
1745 29, 32, 38 1911 2 18 21; 35 40,9 20,8 6,7 S 4+15 9 15
1746 38 1911 2 18 21; 38 41 20,7 5,7 S 5+14 - 15
1747 38 1911 2 20 15; 15 41 20,7 5,7 S 5+14 - 15
1748 10, 38 1911 2 22 2; 08 40,6 20,8 5,9 S 7,6+14 - 15
1749 38 1911 3 9 2; 00 41 20,7 5,7 S 5+14 - 15
1750 38 1911 4 4 15; 43 36,5 26,5 7,2 S 1.2+16 - 140
1751 10, 12, 13, 30 1911 4 18 18; 14 31,2 56,9 6,2 S 14+15 - 36
1752 10,38 1911 4 30 20; 42 36 30 6,2 S 1.4+15 - 140
1753 8, 10,17, 29 1911 6 7 23; 58 41 50,5 6,4 S 2,2+15 6-7 46
1754 7, 10, 21 1911 7 4 13; 33 36,5 70,5 7,6 L 2.7E+16 8 160
1755 29, 32, 38 1911 10 22 22; 31 39,5 23 6 S 9,+14 7 -
1756 32, 33, 38 1912 1 24 16; 22 38,1 20,8 6,8 S 5+15 10 60
1757 38 1912 1 25 19; 52 38,2 20,6 5,7 S 5+14 - 30
1758 29, 32, 38 1912 2 10 8; 03 40,9 20,6 6,2 S 1,4+15 7 -
1759 38 1912 2 15 9; 30 41 20 5,7 S 5+14 - 15
1760 10,21 1912 4 25 10; 27 36,5 70,5 6,4 S 2,2+15 - 220
1761 32, 38 1912 5 17 16; 38 34,2 23,7 5,9 S 7,6+14 7 -
1762 10 1912 5 22 23; 08 36,5 70,5 6,9 S 6+15 - 220
1763 8, 10, 29, 38 1912 5 25 18; 01 45,8 27,2 6,3 S 1,7+15 8 40
1764 8, 10, 38 1912 5 25 20; 15 45,7 27,2 6,2 S 1.4+15 6-7 40
1765 8, 10 1912 5 25 21; 00 45,7 27,2 6,2 S 1,4+15 6-7 40
1766 10 1912 6 1 0; 34 36,5 70,5 6,8 S 5+15 - 200
1767 10,12,29, 38 1912 8 9 1; 29 40,6 26,8 7,3 S 1,4+16 - 14
1768 8 1912 8 10 1; 17 43,5 45,1 5,7 S 5+14 50
1769 10,29, 38 1912 8 10 9; 23 40,6 27,1 6,3 S 1,7+15 - 15
1770 10 1912 8 23 21; 14 36,5 70,5 6,8 S 5+15 - 200
1771 11, 13 1912 9 13 23; 31 40,1 26,8 6,7 S 4+15 9 -
1772 10 1912 10 12 19; 48 41,4 43,8 6,3 S 1,7+15 - 14
1773 10,21 1912 11 28 20; 55 36,5 70,5 6 S 9,+14 - 230
1774 10 1913 2 23 11; 00 44 80 5,7 S 5+14 - 15
1775 13, 14, 30 1913 3 24 10; 34 26,8 53,7 5,8 S 6+14 - -
1776 10 1913 3 25 14; 03 41,8 48,3 5,7 S 5+14 7 70
1777 11, 13 1913 4 20 3; 13 41,5 44,2 6,1 S 1+15 8 10

20. .., ..

609

1 2 3 4 5 6 7 8 9 10 11 12 13
1778 10, 29, 32,38 1913 6 14 9; 33 43,1 25,7 7 S 7,6+15 9 15
1779 32, 38 1913 9 30 7; 33 35 24 6 S 9,3+14 8 60
1780 3,10,13 1914 2 6 11; 42 29,5 65 7 S : 7,6*15 - 100
1781 29 1914 3 7 19; 10 38,5 42,2 6,1 S 15 - -
1782 10, 12, 29,32, 38 1914 10 3 22; 07 38 30 6,9 S 6+15 9 14
1783 10 1914 10 9 2; 39 35 78 6,5 S 2,7+15 - 33
1784 29,32, 38 1914 10 13 6; 22 38,3 23,4 6 S 9,+14 8 8
1785 16, 29, 32,33,

38

1914 11 27 14; 39 38,8 20,6 6,3 S 1,7E+15 9 -
1786 32,38 1915 1 27 1; 09 38,5 20,7 6,6 S 3,+15 9 -
1787 10,21 1915 2 24 15; 41 39,2 67,8 5,7 S 5+14 7 30
1788 10,21 1915 6 3 8; 08 36,5 70,5 6,6 S 3,+15 - 200
1789 29, 32,38 1915 6 4 17; 22 39,1 21,5 5,8 S 6+14 7 -
1790 29, 32, 33, 38 1915 8 7 15; 04 38,5 20,7 6,7 S 4+15 9 -
1791 10,38 1915 8 10 0; 47 38,5 20,5 5,7 S 5+14 - 7
1792 : 10. 38 1915 8 10 2; 02 38,5 20,5 6,4 S 2,2+15 - 16
1793 32 1915 8 11 6; 42 39,2 20,2 6,1 W 1+15 7 -
1794 26,29, 38 1915 8 11 9; 10 38,5 20,5 5,9 S 7,6+14 - 10
1795 38 1915 8 19 6; 42 39 20 6 S 9,3+14 - 14
1796 10 1915 12 17 7; 05 42 79,2 6,7 S 4+15 - 40
1797 10,12,29, 32 1916 1 24 6; 55 40,3 36,8 7,1 S 9,+15 8 10
1798 8,10, 29,38 1916 1 26 7; 37 45,4 24,6 6,4 S 2,2+15 8 21
1799 32,38 1916 2 6 14; 39 39,1 23,5 5,8 S 6+14 7 -
1800 10 1916 2 28 13; 16 43 77,2 6 S 9,+14 - 25
1801 10 1916 2 29 18; 55 40,6 78,2 5,8 S 6+14 - 20
1802 10,21 1916 4 21 13; 56 36,5 70,5 6,8 S 5+15 - 220
1803 16,29,32, 38 1916 9 27 15; 02 38,9 23 5,9 W 7,6+14 7 6
1804 10,29,38 1917 1 29 8; 22 45,9 15,6 5,7 S 5+14 - 6
1805 10,21 1917 4 21 0; 49 37 70,5 7,3 L 1.4+16 - 220
1806 10,29, 38 1917 5 23 5; 46 39 20,4 6,1 W 1+15 6 -
1807 10, 32, 38 1917 8 20 23; 02 39,4 25,9 5,7 S 5+14 7 40
1808 13, 17, 30 1917 8 29 13; 00' 37,4 58,1 5,7 S 5+14 - -
1809 7,10, 13, 30 1917 11 28 14; 42 37,2 57,9 5,9 S 7,6+14 - -
1810 29,32,38 1917 12 24 9; 13 38,4 21,8 6 W 9,3+14 8 -
1811 32 1918 1 16 7; 13 38,3 29,5 5,7 S 5+14 7 10
1812 38 1918 1 20 2; 36 39 23 5,7 S 5+14 - 150
1813 38 1918 2 24 1; 56 37,2 21,2 6,4 S 2,2+15 - 14
1814 32 1918 3 17 13; 45 35 27,5 5,7 W 5+14 7 15
1815 3,10,13 1918 3 24 23; 14 35,1 60,7 5,9 S 7,6+14 - -
1816 38 1918 4 18 6; 20 45,7 26,8 5,7 S 5+14 - 100
1817 10,29,36 1918 4 25 2; 22 34,5 41,8 5,7 S 5+14 - -
1818 38 1918 7 16 20; 03 35,8 25,5 7 S 7,6+15 - 150
1819 10 1918 8 9 0; 39 40,9 33,4 5,8 S 6+14 - 10
1820 10, 29,32 1918 8 29 6; 39 40,6 35,2 5,7 S 5+14 - 10
1821 8 1918 9 17 7; 09 37,2 57,7 6,4 2,2+15 8-9 14
1822 10,15,36 1918 9 29 12; 07 35,2 34,7 6,5 S 2,7+15 - 10
1823 10 1918 12 1 2; 35 39 73 6,5 S 2,7+15 - 30
1824 10 1918 12 1 10; 35 39 73 6,5 S 2,7E+15 - -
1825 32 1919 2 24 1; 56 36,7 21 6,3 W 1,7E+15 7 -
1826 3, 10, 13 1919 5 12 22; 30 36,2 44 5,7 S 5+14 - -
1827 10,29,32 1919 6 9 7; 13 41,2 33,2 5,7 S 5+14 7 10

bgcolor=white>7
1 2 3 4 5 6 7 8 9 10 11 12 13
1828 9, 10,21 1919 7 24 2; 03 40 76 6,7 S 4+15 30
1829 32, 38 1919 10 25 17; 10 36,7 25,6 6,1 W 1+15 7 10
1830 10,.29,∙32, 38 1919 11 18 21; 54 39,3 26,7 7 S 7,6+15 9 10
1831 10, 38 1919 11 27 - 39,2 27,2 6 S 9,+14 - 30
1832 29, 32, 38 1919 12 22 23; 41 40 20,7 6,3 S 1,7+15 8 -
1833 8,10,29 1919 12 25 21; 42 44,6 34,9 5,7 S 5+14 24
1834 8, 10,29,30 1920 2 20 11; 44 42 44,1 6,2 S 1,4+15 8-9 11
1835 41 1920 8 19 - 42,2 73,6 7,4 S 1,7+16 - -
1836 10,29, 32, 38 1920 9 28 15; 17 37,9 28,4 5,7 S 5+14 7 10
1837 32 1920 10 21 18; 57 39,6 20,3 5,8 W 6+14 7 -
1838 32,38 1920 11 15 9; 20 36 25,7 6 S 9,3+14 6 120
1839 29, 32, 38 1920 26 8; 51 40,3 20 6,3 S 1,7E+15 9 25
1840 32 1920 12 10 2; 01 41,1 20,1 5,8 W 6,1+14 7 -
1841 29, 38 1921 1 16 23; 55 38,3 32,8 5,7 S 5+14 7 10
1842 29, 32,38 1921 3 30 15; 05 41,7 20,5 5,8 S 6+14 7 -
1843 10,21 1921 5 20 0; 43 36 70,5 7,2 S 1.2+16 - 220
1844 32 1921 6 14 3; 40 39,3 21 5,7 W 5+14 7 -
1845 29, 32, 38 1921 8 10 14; 10 42,3 21,4 5,8 S 6+14 7 -
1846 29, 32, 33,38 1921 9 13 8; 59 38,9 21,2 6 W 9,3+14 8 -
1847 10, , 13,25, 29 1921 9 26 9; 26 38,4 31,8 5,8 S 6+14 10
1848 1 1921 10 5 19; 09 36,1 36,3 5,8 S 6+14 7 20
1849 10,21 1921 11 15 20; 36 36,5 70,5 7,6 L 2,7E+16 - 215
1850 10,29, 38 1922 3 24 12; 22 44,4 20,4 6 S 9,3+14 - 8
1851 32, 38 1922 6 5 4; 31 35 22,5 5,9 W 7,6+14 7 -
1852 32, 38 1922 7 22 16; 26 35 22,5 5,7 S 5+14 7 -
1853 14, 29, 32, 38 1922 8 11 8; 19 35,4 27,7 6,5 S 2,7E+15 7 10
1854 14, 32, 38 1922 8 13 0; 09 35,5 28 6,7 S 4+15 6 10
1855 38 1922 8 13 12; 46 36 28 5,8 S 6+14 - 15
1856 32, 38 1922 11 4 4; 20 37 20,5 5,9 S 7,6+14 7 -
1857 10,21 1922 12 6 13; 55 37,4 71,3 7,2 L 1,2+16 - 230
1858 29, 32, 38 1922 12 7 16; 22 41,8 20,6 6,1 S 1+15 8 -
1859 10,21 1922 12 17 0; 51 36,5 70,5 6,7 L 4+15 - 210
1860 10, 38 1923 3 15 5; 40 43,3 17,3 6,2 S 1,4+15 - 16
1861 10, 29,32 1923 4 29 9; 34 40,1 36,4 5,9 S 7,6+14 7 10
1862 3,10,13 1923 5 25 22; 24 35,2 59,1 5,8 S 6+14 - 10
1863 14, 38 1923 8 1 9; 16 35 25 7,1 S 9,3+15 - 160
1864 38 1923 8 3 1; 56 35 25 6,1 S 1+15 - 150
1865 10 1923 8 10 2; 17 41 77,5 5,8 S 6+14 - 20
1866 10 1923 8 31 2; 15 38,5 72 5,9 S 7,6+14 - 10
1867 7, 10, 13, 30 1923 9 17 7; 09 37,9 57,5 6,4 S 2,2+15 - 14'∙
1868 3, 10,13 1923 9 22 20; 47 29,5 56,6 6,7 S 4+15 - -
1869 10, 32, 38 1923 12 5 20; 56 39,8 23,5 6,4 S 2,2+15 8 15
1870 10,21 1923 12 28 22; 24 39,6 69,2 6,4 S 2,2+15 8 18
1871 29 1924 1 22 11; 05 39,5 28,4 6,4 S 2,2+15 - -
1872 136 1924 2 18 17; 03 35,2 34,7 6 S 9,+14 - -
1873 10, 23, 29, 30 1924 2 19 7; 00 39,4 48,6 6,6 S ,+15 7 75
1874 32, 36 1924 2 27 20; 24 32,7 36,2 5,7 S 5+14 7 -
1875 13, 30 1924 6 30 3; 41 27,5 53,8 5,8 S 6+14 * - -
1876 10 1924 7 6 18; 31 40,5 73,1 6,4 S 2,2+15 - 22
1877 10 1924 7 12 15; 12 40,6 73,2 6,5 S 2,7E+15 - 14
1878 129 1924 9 10 11; 59 37 34,3 5,9 S 7,6+14 - -

bgcolor=white>5+15
1 2 3 4 5 6 7 8 9 10 11 12 13
1879 10, 1113,29,

30

1924 9 13 14;34 40 42,3 6,8 S 5+15 8 -
1880 2,3 1924 9 13 20; 45 40 41,9 5,8 S 5,5+14 8 15
1881 10,21 1924 9 16 2; 36 38,9 70,5 6,4 S 2,2+15 - 20
1882 10,21 1924 9 17 10; 20 36,8 70,7 6,2 S 1.4+15 - 100
1883 10,21 1924 10 13 16; 17 36 70,5 6,9 L 6+15 - 100
1884 10,29, 32, 38 1924 11 20 20; 27 39 30,8 6 S 9,3+14 7 10
1885 8, 10,29,30 1925 1 9 17; 38 41,2 42,8 5,8 S 6,1+14 8 11
1886 10 1925 3 8 11; 27 36,5 70,5 5,7 S 5+14 - 200
1887 36 1925 4 5 3; 04 35,5 29 6 S 9,+14 7 15
1888 10,21 1925 5 14 7; 10 37 69,5 6 S 9,+14 - 150
1889 10,21 1925 6 20 13; 04 36,5 71,5 6,7 S 4+15 6 80
1890 10, 29, 32, 38 1925 7 6 12; 15 37,8 22, 1 6,6 S ,+15 8 20
1891 10, 29, 32,38 1925 8 7 6; 46 38,1 29,8 5,9 S 7,6+14 - 24
1892 10 1925 9 28 21; 42 50 76 5,8 S 6,1+14 - 20
1893 9, 10, 21 1925 12 7 8; 34 37 75,9 6,1 S 1+15 - 220
1894 7, 10, 21 1925 12 18 18; 10 36,7 71 6,3 S 1,7+15 7 10
1895 29, 32 1926 1 13 1; 46 38,1 28,8 5,7 S 5+14 7 -
1896 32 1926 2 26 16; 08 37,8 21,1 5,7 W 5+14 8 10
1897 10, 29,32, 38 1926 3 1 20; 02 37,2 29,6 6,2 S 14+15 10 15
1898 10, 29, 32, 38 1926 3 16 17; 53 37,5 29 6,3 S 17+15 8 10
1899 10, 14, 15, 32,

36

1926 3 18 14; 06 36 30,1 6,8 S - 150
1900 10 1926 5 26 9; 40 36,5 70,5 5,8 S 6+14 - 120
1901 38 1926 6 10 19; 16 39,8 20 6,2 S 14+15 11 100
1902 14, 15, 32, 36,

38

1926 6 26 19; 46 36,5 27,5 8 S 6+16 - 10
1903 10 1926 6 30 22; 51 38,8 70 5,7 S 5+14 - 150
1904 38 1926 7 5 9; 21 36,5 27 6,2 S 1,4+15 - 33
1905 9, 10 1926 8 6 22; 45 35,5 78,5 6,4 S 2,2+15 8 100
1906 14, 32, 38 1926 8 30 11; 38 36,8 26,3 7,2 W 1.2+16 5 -
1907 32, 38 1926 9 19 1; 03 36 22 6,3 W 1,7+15 -
1908 5, 10,29 1926 10 22 19; 59 40,7 43,7 6 S 9,+14 7 10
1909 32 1926 12 16 17; 54 40,1 30,7 5,7 S 5+14 - 20
1910 10,38 1926 12 17 6; 31 41,3 19,6 5,8 S 6+14 9 -
1911 29, 32, 38 1926 12 17 11; 39 41,3 19,6 6,1 S 1+15 - 17
1912 10,38 1927 2 14 3; 43 43 18,1 6 S 9,+14 7 200
1913 10, 21 1927 4 18 15; 02 37 71 6,8 S 5+15 - 20
1914 9, 10,21 1927 4 30 13; 56 39,5 79 6,3 S 1,7+15 - -
1915 13,30 1927 5 9 10; 31 27,7 56,7 5,8 S 6+14 - 12
1916 10, 26, 29, 38 1927 5 15 2; 47 44,1 20,5 5,9 S 7,6+14 8 -
1917 10,24 1927 6 5 2; 24 36 31 6,2 S 14+15 7 27
1918 10 1927 6 26 11; 20 44,5 34,3 6 S 9,3+14 7 -
1919 32 1927 6 30 22; 57 39 20,7 5,8 W 6+14 9 -
1920 14, 29, 32, 36,

38

1927 7 1 8; 18 36,8 22,4 7,1 S 9,3+15 - 100
1921 13,30 1927 7 7 20; 06 27 62,3 5,7 S 5+14 10 -
1922 10, 12, 14, 29,

36, 37

1927 7 11 - 32 35,5 6 S 9,3+14 - 220
1923 10, 21 1927 7 15 3; 46 36,8 71,3 6 S 9,3+14 - 40
1924 3, 10,13 1927 7 22 3; 55 35 53,8 6,3 S 1,7E+15 - 13
1925 10 1927 7 23 22; 40 34,5 53,9 6 S 9,+14 - 14

bgcolor=white>7,2
1 2 3 4 5 6 7 8 9 10 11 12 13
1926 10 1927 8 12 10; 22 41 71,6 6 S 9,+14 9 17
1927 8, 10 1927 9 11 22; 15 44,3 34,3 6,8 S 5+15 - -
1928 8, 10, 29, 32 1927 9 11 22; 17 44,3 34,3 5,8 S 6,1+14 6-7 30
1929 8, 10 1927 9 11 23; 44 44,4 34,6 5,8 S 6+14 5^> 50
1930 8, 10 1927 9 12 3; 20 44,5 34,5 6 S 9,3+14 6-7 35
1931 8, 10 1927 9 12 14; 23 44,5 34,5 5,7 S 5+14 6-7 25
1932 36 1927 9 24 0; 28 30,4 34,1 6, 1 S 1,1+15 - -
1933 8, 10 1927 9 24 6; 13 44,4 34,4 5,7 S 5+14 6-7 23
1934 10,21 1928 2 25 17; 23 36,5 71 6,2 L 1,4+15 6 180
1935 29,41 1928 3 7 10; 55 38,6 16,8 5,8 S 6+14 - -
1936 29, 32, 38 1928 3 31 0; 29 38,2 27,4 6,5 S 2,7+15 9 -
1937 10,12,26,29,

38

1928 4 14 8; 59 42,2 25,3 6,8 S 5+15 - 7
1938 10, 12, 29, 32,

38

1928 4 18 19; 22 42,2 25 7 S 7,6+15 10 16
1939 29 1928 4 18 19; 40 42,2 25,1 6 S 9,3+14 - -
1940 10, 29, 32, 33,

38

1928 4 22 20; 13 37,9 23 6,3 S 1,7+15 9 5
1941 32 1928 4 23 9; 25 42,1 25,9 5,7 S 5+14 7 10
1942 10,29, 32, 38 1928 5 2 21; 54 39,6 29,1 6,1 S 1,1+15 7 10
1943 10,21 1928 6 24 4; 34 36 70,5 6,3 S 1,7+15 - 120
1944 10,21 1928 8 10 15; 33 36,7 71 6 S 9,+14 - 200
1945 10 1928 9 1 6; 09 29 68,5 6,4 S 2,2+15 - 33
1946 32 1928 10 4 11; 14 40,2 33,7 5,7 S 5+14 7 10
1947 10 1928 10 15 14; 19 28,5 67,5 6,9 S 6+15 - 33
1948 10 1928 11 14 4; 33 35 72,5 6,8 S 5+15 -
1949 8, 10, 29 1928 11 23 4; 23 45,7 26,6 5,7 S 5+14 5-6 150
1950 10,21 1929 2 1 17; 14 36,7 71,3 7,4 S 1,7+16 8 200
1951 10,21 1929 3 3 3; 11 36,8 70,7 6 L 9,3+14 - 200
1952 10 1929 3 13 11; 01 36,2 71 5,9 S 7,6+14 - 100
1953 38 1929 3 27 7; 41 36,8 26,5 6,2 S 1,4+15 - 100
1954 7, 10, 12 26,

30

1929 5 1 15; 37 37,8 57,8 7,4 S 1.7+16 - 21
1955 7, 8, 10, 30 1929 5 13 13; 27 37,8 57,4 5,7 S 5+14 8 13
1956 10,23, 29 1929 5 18 6; 38 40,2 37,9 6,4 S 2,2+15 8,5 13
1957 10 1929 6 3 20; 29 43,2 67,1 6,4 S 2,2+15 - 51
1958 8,10, 21 1929 6 4 7; 04 37,3 66,5 5,7 S 5+14 8 14
1959 7, 8, 10, 17, 30 1929 7 13 7; 36 37,5 58 5,8 S 6+14 7-8 13
1960 10, 12, 13, 30 1929 7 15 7; 44 32,1 49,5 6 S 9,3+14 - 15
1961 7, 8,10, 17 1929 7 25 0; 17 37,6 57,9 5,7 S 5+14 8 13
1962 6 1929 9 3 12; 07 26 62 6,3 S 1,7+15 - -
1963 10, 21 1929 9 24 13; 52 36,7 70,7 6,4 S 2,2+15 7 200
1964 10, 29, 38 1929 11 1 6; 57 45,9 26,5 6,7 S 4+15 - 150
1965 14, 32, 38 1929 11 11 7; 35 36,7 26,2 S 1,2+16 7 15
1966 14, 15, 32, 38 1930 2 14 18; 38 36,5 24,5 6,7 S 4+15 10 130
1967 32, 38 1930 2 23 18; 19 39,5 23 6 S 9,3+14 8 -
1968 32, 38 1930 3 6 9; 18 34,7 24,5 5,8 S 6+14 7 60
1969 10, 32, 38 1930 3 31 12; 33 39,5 23 6,1 S 1+15 8 11
1970 16, 32,38 1930 4 17 20; 06 37,8 23,1 6 S 9,3+14 8 11
1971 6 1930 5 6 22; 32 38 44 6,3 S 1,7+15 - -
1972 10, 11, 12, 13, 1930 5 6 22; 34 38,2 44,6 7,2 S 1,2+16 9 -

29, 30

2 3 4 5 6 7 8 9 10 12

1973 3,10,29 1930 5 8 15; 35 37,3
1974 13,30 1930 5 11 22; 35 27,7
1975 29 1930 7 23 0; 08 41,1
1976 13, 30 1930 8 23 10; 53 27,9
1977 10,29, 38 1930 9 11 12; 36 37,5
1978 10,21 1930 9 11 17; 20 36,7
1979 10,21 1930 9 22 16; 26 38,5
1980 32,38 1930 11 21 2; 00 40,2
1981 10 1931 1 7 3; 49 36,5
1982 7, 10 1931 1 20 9; 27 36,5
1983 26,29, 32, 38 1931 1 28 5; 55 40,6
1984 10,29,38 1931 3 7 0; 16 41,2
1985 10,26,29,32,

33,38

1931 3 8 1; 50 41,3
1986 32 1931 4 9 - 38,3
1987 2, 3,5,6, 8,

10,23, 26,29

1931 4 27 16; 50 39,3
1988 10 1931 8 15 4; 01 36,5
1989 10 1931 8 24 21; 35 30,3
1990 10 1931 8 27 15; 27 29,9
1991 10 1931 9 14 3; 32 36,6
1992 10 1931 10 5 22; 31 36,6
1993 8,10,23,29 1931 10 20 15; 58 42,5
1994 32 1932 6 29 19; 20 40,5
1995 10, 38 1932 8 15 4; 34 38,5
1996 10, 12,26,29,

32,38

1932 9 26 19; 20 40,4
1997 10, 33 1932 9 26 21; 27 40,5
1998 10, 29, 38 1932 9 28 16; 52 40,5
1999 10,29, 38 1932 9 29 3; 57 40,9
2000 7, 8, 10 1932 10 2 3; 22 41,4
2001 10 1932 10 29 11; 08 39,2
2002 7, 10 1933 1 9 2; 01 36,4
2003 10 1933 1 20 12; 12 36,5
2004 26, 32,38 1933 4 23 5; 57 36,8
2005 1, 29, 32, 38 1933 5 11 19; 09 40,4
2006 10 1933 5 27 22; 42 37
2007 1, 29, 32, 38 1933 7 19 20; 07 38,2
2008 6, 10, 13, 23,

30

1933 10 5 13; 29 34,6
2009 6, 10, 12, 13,

26, 30

1933 11 28 11; 09 32,1
2010 6, 10, 13, 30 1934 2 4 13; 27 30,7
2011 2,3 1934 2 22 8; 07 38,5
2012 18,29,38 1934 3 29 20; 06 45,7
2013 10 1934 6 4 5; 55 38,4
2014 6,13,30 1934 6 13 22; 10 27,6
2015 10 1934 7 22 19; 57 36,5
2016 10 1934 7 28 2; 06 41
2017 10 1934 8 31 14; 57 38,9
2018 6, 8,10,29,

30, 32

1934 10 29 16; 15 39,9
44,8 6 S 9.3+14 - 21
55,3 5,8 S 6,1+14 - -
15,7 6,5 S 2.7+15 - -
55 6,1 S 1,1E+15 - -
30,5 5,9 S 7,6E+14 - 26
70,1 6,2 S 1.4+15 7 220
69,5 5,7 S 5+14 8 5
19,6 6,3 W 1,7E+15 8 4
71 5,7 S 5+14 - 200
70,6 6,3 S 1,7E+15 - 300
20,7 5,9 S 7.6+14 10 25
22,5 6 S 9.3+14 - 18
22,5 6,7 S 4+15 10 25
31,9 7 S 7.6+15 9
46 6,5 S 2.7+15 8-9 20
70,8 5,9 S 7.6+14 200
67,8 6,7 S 4+15 - 33
67,3 7,2 S 1.2+16 - 22
70,8 5,7 S 5+14 - 220
71 6,6 S .+15 - 160
50,8 6,2 S 1,4+15 7-8 70
23,9 6,9 S 6,1+15 9 6
22,2 5,8 S 6.1+14 - 100
23,8 7 S 7,6+15 10 5
23,8 5,9 S 7,6+14 8
23,8 5,7 S 5+14 - 9
23,3 6,2 S 1.4+15 - 13
65,6 6,2 S 1,4+15 7 30
72,2 5,9 S 7.6+14 - 20
69,6 6,6 S 3,+15 - 180
70,5 5,7 S 5+14 - 230
27,3 6,5 S 2.7+15 9 30
23,7 6,3 S 1,7+15 8 21
70,5 5,8 S 6.1+14 - 230
29,8 5,7 S 5+14 7 40
57,3 6 S 9,+14 - 10
56 6,3 S 1.7+15 - 27
51,6 6,3 S 1.7E+15
45 5,8 S 5.5+14 7 30
26,5 6,9 S 6,1+15 8 150
72,8 5,9 S 7.6+14 - 160
62,6 6,6 S .+15 - -
70,5 6,5 S 2.7+15 - 220
77,5 5,7 S 5+14 - 20
70,9 6,5 S 2,7+15 - 8
47,8 5,7 S 5+14 6-7 30

bgcolor=white>11
1 2 3 4 5 6 7 8 9 10 11 12 13
2019 14,32,38 1934 9 13; 40 36,7 25,7 6,2 S 1,4+15 5 150
2020 1-3,10,29,32 1934 11 12 7; 19 38,5 41 5,9 S 7,6+14 - 40
2021 10 1934 11 18 3; 21 36,4 70,6 6,7 S 4+15 - 200
2022 10,23 1934 11 27 - 37,9 40,2 6,4 S 2,2+15 8,5 20
2023 10,29 1934 12 15 - 38,9 40,5 5,8 S 6,1+14 - -
2024 10,26,29,32, 38 1935 1 4 14; 41 40,4 27,5 6,4 S 2,2+15 8 30
2025 29, 32, 38 1935 1 4 16; 20 40,3 27,5 6,3 S 1,7E+15 10 20
2026 10 1935 2 3 2; 10 36,5 70,5 6,1 S 1+15 - 220
2027 14, 15,26,32, 38 1935 2 25 2; 51 36 25 7 W 7,6+15 8 100
2028 6,7,8, 10,13,

23, 30

1935 3 5 10; 26 35,9 53,1 6 S 9,3+14 8 15
2029 14, 32,38 1935 3 18 8; 40 35,3 26,8 6,4 S 2,2+15 5 70
2030 29,32,38 1933 3 31 3; 21 41,3 20,3 5,7 S 5+14 7 -
2031 6 1935 4 1 23; 14 36 53 6,7 S 4+15 - -
2032 10 1935 4 3 11; 12 36,7 70,9 6,3 S 1/7+15 - 160
2033 8,10,23 1935 4 9 19; 59 42,1 48,8 6,3 S 1,7+15 6 90
2034 - 1935 4 11 23; 15 36,5 53,6 6,4 S 2,2+15 - 18
2035 7,8,10 1935 4 12 12; 44 36 53,4 5,7 S 5+14 - 12
2036 14,29 1935 4 19 15; 23 31 15,2 7,1 S 9,3+15 - -
2037 29 1935 4 19 20; 31 30,8 15,5 5,7 S 5+14 - -
2038 14,29 1935 4 20 5; 30,8 15,5 6,1 S 1+15 - -
2039 2, 3,5, 8,10,

23,26,29,32

1935 5 1 10; 24 40,4 43,4 6,2 S 1,4+15 8 14
2040 10 1935 5 12 5; 20 37,5 71,2 6 S 9,+14 - 100
2041 10 12 1935 5 30 21; 32 29,5 66,8 7,6 S 2.7E+16 - 33
2042 7, 10 1935 7 5 17; 53 38,3 67,4 6,2 S 1,4+15 - 18
2043 8,29 1935 7 13 0; 03 45,7 26,7 5,7 S 5+14 6 150
2044 10 1935 7 28 5; 24 36,7 71,5 6 S 9,+14 - 150
2045 10 1935 7 29 23; 16 39,5 73,5 5,7 S 5+14 - 20
2046 10 1935 10 8 9; 19 38,8 70,8 6,1 S 1+15 - 8
2047 10 1935 10 11 4; 20 36,3 70,4 5,8 S 6+14 - 200
2048 2,3 1935 11 14 7; 27 39,2 40,6 5,8 S 5,5+14 8 20
2049 10,23 1936 3 24 19; 46 39 42 6,1 S 1+15 8 20
2050 6,13,30 1936 6 10 3; 29 26,5 64 5,7 S 5+14 - -
2051 10 1936 6 29 14; 30 36,4 70,7 6,7 S 4+15 - 200
2052 6,10,13, 30 1936 6 30 19; 26 33,6 60 6,2 S 1.4+15 - 14
2053 32 1936 8 8 4; 12 34 26 5,8 W 6+14 7 60
2054 10 1936 8 20 23; 32 36,7 71,2 5,9 S 7,6+14 - 100
2055 10 1937 7 23 20; 44 38,5 73,8 5,8 S 6+14 - 100
2056 10 1937 9 9 17; 35 36,2 71,2 5,7 S 5+14 - 100
2057 10 1937 10 29 7; 26 36,6 70,1 6,5 S 2,7E+15 - 200
2058 10 1937 11 7 19; 07 35 73 5,8 S 6+14 - 100
2059 10 1937 11 14 10; 58 35 73 7,3 S 1,4+16 - 200
2060 10 1937 11 15 21; 37 35 18 6,8 S 5+15 - 100
2061 32,38 1937 12 16 17; 35 35,7 23,2 6,3 S 1,7+15 5 100
2062 10 1937 12 18 13; 18 42,1 70,9 6,5 S 2.7+15 - 25
2063 10 1938 1 18 9; 29 36,7 70,8 6 S 9,+14 - 200
2064 10 1938 1 26 10; 48 36,5 70,5 5,8 S 6+14 - 300
2065 7, 8, 10, 13, 1938 2 14 2; 54 40,5 53,5 6,2 S 1,4+15 - 24

23,30

bgcolor=white>1940
1 2 3 4 5 6 7 8 9 10 11 12 13
2066 32,38 1938 3 13 17; 45 38,8 20,6 5,8 S 6+14 7
2067 10, 12,26,29,

32

1938 4 19 10; 59 39,4 33,8 6,6 S ,+15 9 10
2068 32, 38 1938 5 12 22; 09 35,2 26,2 5,8 S 6,1+14 7 23
2069 32, 38 1938 6 3 16; 37 34,5 26,5 5,9 S 7.6+14 5 52
2070 10 1938 6 20 23; 50 42,7 76,1 6,9 S 6.1+15 - 10
2071 10,29, 32, 38 1938 7 20 0; 23 38,3 23,8 6 S 9,+14 8 7
2072 16,29, 32,38 1938 9 18 3; 50 38 22,5 6,4 W 2,2+15 6 100
2073 10 1939 5 30 10; 07 39 70,5 5,8 S 6.1+14 - 6
2074 2, 8, 38 1939 9 5 6; 02 45,9 26,6 6,1 S 1+15 6 150
2075 10,29, 32, 38 1939 9 15 23; 16 39,8 29,6 5,7 S 5+14 7 20
2076 26, 32 1939 9 20 0; 37 39,1 26,8 6,5 S 2,7+15 7 -
2077 32 1939 9 22 0; 19 38 20,9 6,3 W 1.7+15 8 60
2078 32 1939 9 22 0; 36 39,1 26,9 6,6 S .+15 9 10
2079 6,13 1939 11 4 10; 15 32,4 48,5 5,7 S 5+14 - -
2080 2, 3,10, 23,

29, 32

1939 11 21 8; 49 39,8 39,7 6,5 S 2,7E+15 7 80
2081 10 1939 11 21 11; 02 36,3 70,6 7,3 S 1,4+16 - 220
2082 2, 3, 8, 10,12,

15, 23, 26,29,

32

1939 12 26 23; 57 40,1 38,2 7,8 S 4+16 11 14
2083 10, 29, 32 1939 12 28 3; 25 40 37 5,7 S 5+14 - -
2084 38 1940 1 29 6; 07 35,5 25,5 6 S 9,+14 - 32
2085 10 2 8 15; 15 36,5 70,6 5,8 S 6+14 - 180
2086 32 1940 2 29 16; 07 35,7 25,9 6 W 9,+14 5 32
2087 10 1940 3 4 10; 19 36,6 70,6 7,7 S ,+16 - 99
2088 10 1940 3 19 4; 36 36,5 70,4 6,6 S ,+15 - 160
2089 6,7,8, 10, 13,

23,30

1940 5 4 21; 02 35,8 58,5 6,5 S 2,7+15 - 23
2090 2,3,8, 10, 11,

13, 23, 26, 29,

32

1940 5 7 22; 23 41,7 43,8 6 S 9,+14 8 19
2091 10 1940 5 27 4; 10 36,7 71,2 6,1 S 1+15 - 240
2092 8, 29 1940 6 24 9; 57 45,8 26,5 5,8 S 6+14 5-6 120
2093 32 1940 7 13 22; 15 34,5 34,5 5,7 S 5+14 7 -
2094 10 1940 7 17 6; 36 36,8 71,5 5,7 S 5+14 - 15
2095 7, 8, 10 1940 7 19 4; 53 37,5 57,5 5,8 S 6+14 - 13
2096 136 1940 7 24 22; 15 34,5 34 5,7 S 5+14 8 80
2097 10,29, 32 1940 7 31 0; 12 39,6 35,3 6,2 S 1.4+15 8 50
2098 10 1940 8 30 15; 02 44,6 79,4 5,7 S 5+14 - 20
2099 10 1940 9 21 13; 49 36,5 70,5 6,5 S 2,7E+15 - 230
2100 32 1940 9 29 16; 07 35,7 25,9 6 S 9,3+14 5 -
2101 10 1940 10 5 14; 44 37,2 69 5,8 S 6+14 - 15
2102 8, 10,29, 38 1940 10 22 6; 37 45,9 26,5 6,2 S 1.4+15 7 150
2103 10 1940 4 8; 30 36,6 70,7 6,2 S 1,4+15 - 200
2104 8, 10,26,29,

38

1940 11 10 1; 39 45,8 26,8 7,3 S 1,4+16 9 150
2105 8,29 1940 11 11 6; 34 45,8 26,8 6 S 9,+14 - 100
2106 10 1940 11 20 18; 00 36,6 70,8 5,8 S 6+14 - 200
2107 10, 32 1940 12 20 - 39,1 39,2 6 S 9,+14 8 -
2108 10 1940 12 25 23; 07 36,3 71,1 6 S 9,3+14 - 200
2109 1, 10, 15,36 1941 1 20 3; 37 35 34,4 5,9 S 7,6+14 9 100

bgcolor=white>2153
1 2 3 4 5 6 7 8 9 10 11 12 13
2110 6,10, 12,13,

26,30

1941 2 16 16; 39 33,4 58,9 6,2 S 1,4+15 - 11
2111 29, 32,33,38 1941 3 1 3; 52 39,6 22,5 6,3 S 1,7E+15 8 -
2112 10 1941 3 11 21; 49 36,8 71,1 5,7 S 5+14 - 200
2113 10 1941 4 14 19; 32 36,8 71,2 5,8 S 6,1+14 - 240
2114 10 1941 4 20 17; 38 39,2 70,5 6,4 S 2,2+15 - 8
2115 10, 29,32 1941 4 27 13; 01 39,7 35,3 5,7 S 5+14 - 60
2116 10, 32,38 1941 5 23 19; 51 37,1 28,2 6 S 9,3+14 8 40
2117 10 1941 6 16 5; 42 40,8 27,8 6 S 9,+14 - 20
2118 32 1941 7 13 15; 39 37,7 26,1 5,9 S 7,6+14 5 60
2119 2, 3,5,6, 8,

10,26, 29,30

1941 9 10 21; 53 39,5 43 6 S 9,3+14 28
2121 2,3, 32 1941 11 8 - 39,7 39,5 6 S 9,3+14 8 25
2122 2,3,10, 29 1941 11 12 10; 04 39,7 39,4 5,9 S 7,6+14 6-7 60
2123 10 1941 11 28 12; 23 36,6 70,6 6,3 S 1.7+15 - 200
2124 29, 32, 38 1941 12 13 6; 16 37,1 28,1 6,5 S 2,7+15 7 30
2125 10 1942 1 18 16; 36 41,1 71,6 5,9 S 7,6+14 - 21
2126 1 1942 2 18 17; 04 34,5 34 5,8 S 6,1+14 - 60
2127 10 1942 3 22 2; 08 36,6 70,7 6,3 S 1,7E+15 - 200
2128 32,38 1942 5 21 3; 42 37,3 20,6 5,7 W 5+14 7 -
2129 32 1942 6 16 4; 17 33,8 26,5 5,7 W 5+14 7 41
2130 10,32 1942 6 16 5; 42 40,8 27,8 6 S 9,3+14 8 20
2131 38 1942 6 16 9; 13 35,7 23,2 6 S 9,3+14 - 150
2132 14,32,38 1942 6 21 4; 38 36 27 6,3 S 17+15 8 90
2133 26,29, 32, 38 1942 8 27 6; 14 41,6 20,4 5,9 S 7,6+14 10 -
2134 32, 38 1942 9 1 9; 42 35,2 26,7 5,7 S 5+14 7 -
2135 29, 32, 38 1942 10 28 2; 22 39,1 27,8 5,9 S 7,6+14 5 50
2136 29, 32,38 1942 11 15 17; 01 39,6 28,6 6,2 S 1.4+15 8 10
2137 7,10 1942 11 16 21; 26 36,5 71,5 5,7 S 5+14 - 100
2138 26 1942 11 26 22; 20 40,5 34 7,6 S 2,7+16 - -
2139 10,29, 32 1942 12 11 2; 39 40,8 34,8 6,1 S 1.1+15 8 40
2140 10,12,26,29,

32

1942 12 20 14; 03 40,7 36,8 7,3 S 1.4+16 9 16
2141 10, 38 1942 12 29 3; 42 43,4 17,2 6 S 9,3+14 - 7
2142 38 1943 1 7 22; 36 37,3 20,6 6,1 S l,lE+15 - 100
2143 10 1943 1 11 19; 50 38,6 69,3 6 S 9,3+14 - 10
2144 26 1943 1 20 15; 32 40,8 30,5 6,6 S ,+15 - -
2145 6,13, 30 1943 2 6 2; 36 24,9 63,3 5,9 S 7,6+14 - -
2146 10 1943 2 6 9; 36 36,5 70,3 6 S 9,3+14 - 240
2147 32 1943 2 14 7; 28 38 20 5,8 W 6,1+14 7 -
2148 10 1943 2 28 12; 54 36,8 70,8 7,1 S 9,3+15 - 280
2149 10 1943 4 5 1; 56 39,3 73,3 6,3 S 1,7E+15 - 20
2150 32, 38 1943 6 20 10; 05 35 26 6,1 S 1,1+15 8 130
2151 10, 1^, 26,29,

32, 38

1943 6 20 15; 32 40,9 30,5 6,6 S 3,+15 9 10
10 1943 9 9 4; 06 36,3 70,8 6,3 S 1,7E+15 - 160
2154 10 1943 9 24 11; 31 36,2 73,4 6,5 S 2,7E+15 - 100
2155 29, 32,36, 38 1943 10 16 13; 08 36,5 27,5 6,3 W 1,7+15 8 110
2156 10,12, 26, 29, 32 1943 11 26 22; 20 41,1 33,7 7,6 S 2,7+16 9-10 10
2157 10 1943 12 12 15; 54 36,4 70,6 5,8 S 6,1+14 - 150
2158 38 1944 1 5 5; 05 36,4 27,4 5,7 S 5+14 - 150
2159 29 1944 1 5 7; 44 36,5 27,6 6,1 S l,lE+15 - -

1 2 3 4 5 6 7 8 9 10 11 12 13
2160 10,12,26,29,

32

1944 2 1 3; 22 41,4 32,7 7,2 S 1,2+16 9-10 10
2161 10,29 1944 3 11 9; 00 40,8 32,3 5,8 S 6,1+14 - 15
2162 10 1944 3 15 5; 04 39,7 73,1 6 S 9,3+14 - 20
2163 29,32,38 1944 5 27 23; 52 36 27,5 6,2 S 1,4+15 7 100
2164 10,12,29,32,

38

1944 6 25 6; 57 39 29,6 6 S 9,+14 8 57
2165 16,10,29 1944 7 17 10; 54 35,9 42,6 5,9 S 7,6+14 - 80
2166 26,32 1944 7 30 4; 00 36,7 22,5 6 S 9,3+14 9 8
2167 38 1944 8 9 17; 36 36,5 27,5 5,9 W 7,6+14 - 100
2168 10 1944 9 27 16; 25 39 74,8 6,7 S 4+15 - 30
2169 9 1944 9 28 0; 25 39,1 75 7 S 7,6+15 - -
2170 9 1944 9 28 0; 53 38,5 74,8 6 S 9,3+14 - -
2171 24,26,29,38 1944 10 6 2; 34 39,5 26,6 6,8 S 5+15 9 40
2172 10 1944 11 14 23; 18 36,5 70,7 6 S 9,+14 - 160
2173 32 1944 11 20 20; 28 39 31 6 S 9,3+14 8 58
2174 10,32 1945 3 2 10; 39 41,2 33,4 5,6 S 4+14 7 10
2175 8,10, 38 1945 3 12 20; 51 45,6 26,4 5,8 S 6,1+14 6 150
2176 1, 10,29, 32 1945 3 20 7; 58 37,1 35,7 6 S 9,3+14 8 60
2177 10 1945 4 19 17; 46 42,9 77,5 5,7 S 5+14 - 20
2178 10 1945 6 4 12; 09 30 80 6,6 S ,+15 - 60
2179 10 1945 6 22 18; 01 32,5 76 6,6 S ,+15 - 60
2180 2, 3,10,30 1945 9 1 - 39 43,3 5,8 S 6,1+14 7-8 15
2181 14, 32, 38 1945 9 2 11; 54 34,4 28,9 6,3 S 1,7+15 8 80
2182 8,10,29, 38 1945 9 7 15; 48 45,7 26,6 6,2 S 1.4+15 7-8 100
2183 29, 32 1945 10 26 13; 56 41,5 33,3 6 S 9,+14 8 50
2184 6,13,30 1945 11 27 21; 56 25 63,5 8 S 6,1+16 - -
2185 8,10,29,38 1945 12 9 6; 08 45,6 26,8 6,1 S 1.1+15 7 90
2186 6,13,30 1946 3 12 2; 21 29,8 51,5 5,7 S 5+14 - -
2187 10, 38 1946 4 5 20; 54 35,1 23,4 5,7 S 5+14 - 120
2188 2, 3, 12,26,

29, 30,32

1946 5 31 3; 12 39,3 41,2 5,9 S 7,6+14 8 60
2189 13 1946 6 20 0; 37 29,5 66 5,8 S 6,1+14 - -
2190 32,38 1946 7 16 5; 26 33,8 25,3 5,7 S 5+14 7 -
2191 30,32 1946 8 17 9; 48 35,6 45,8 6 S 9,3+14 - -
2192 10 1946 11 2 18; 28 41,9 72 7,5 S 2,2+16 - 30
2193 6,7,8,10,13,

23,26, 30

1946 11 4 21; 47 39,3 55,4 7 S 7,6+15 - 26
2194 10 1946 11 7 15; 54 42 72 5,7 S 5+14 - 20
2195 32 1947 4 12 14; 05 39,7 25,2 5,7 W 5+14 7 4
2196 32 1947 6 1 11; 18 36,6 21,5 5,8 W 6,1+14 7 40
2197 10 1947 6 2 6; 40 40,9 72,3 5,9 S 7,6+14 - 13
2198 32,38 1947 6 4 0; 29 40 24 5,9 S 7,6+14 5 60
2199 32 1947 7 7 22; 35 37,2 20,8 5,8 W 6,1+14 7 -
2200 10 1947 7 10 10; 19 33 77 6,1 S 1,1+15 - 6
2201 6, 13,26, 30 1947 8 5 14; 24 25,3 63,2 7 S 7,6+15 - -
2202 32,38 1947 8 30 22; 21 35,1 23,4 6,4 S 2,2+15 5 15
2203 6, 10, 12, 13,

26,30

1947 9 23 12; 28 33,4 59 6,8 S 5+15 - 28
2204 6,10 1947 9 26 3; 04 33,7 58,9 6,1 S 1,1+15 - 10
2205 6,13,14,30 1947 10 3 6; 13 26 57,4 5,8 S 6,1+14 - -
2206 14,26,29,32, 1947 10 6 19; 55 36,9 21,8 6,9 S 6,1+15 9 -

bgcolor=white>2218
1 2 3 4 5 6 7 8 9 10 11 12 13
2207 8,29 1947 10 17 13; 25 45,7 26,6 5,7 S 5+14 100
2208 10 1947 12 7 1; 44 36,7 70,5 5,7 S 5+14 - 200
2209 10 1948 1 28 15; 51 36,8 67,2 6,2 S 1,4+15 - 70
2210 6 1948 1 30 8; 43 24 63 6,3 S 1,7+15 - -
2211 26,32,38 1948 2 9 12; 58 35,4 27,2 7,1 S 9,3+15 10 30
2212 32,38 1948 3 29 10; 22 35,1 23,4 5,7 S 5+14 7 20
2213 26,29,32,33, 38 1948 4 22 10; 42 38,7 20,5 6,4 S 2,2+15 9 -
2214 10,14,38 1948 4 30 14; 50 36 31 5,8 S 6+14 - 45
2215 8,10,29,38 1948 5 29 4; 48 45,9 26,7 6 S 9,+14 6-7 150
2216 1, 8,10,30 1948 6 18 18; 44 37,5 57,8 5,9 S 7,6+14 8 15
2217 32 1948 6 20 16; 06 41,6 46,4 6,1 S 11+15 8 48
8,10,23,29 1948 6 29 16; 06 41,9 46,8 6,1 S 1+15 7 42
2219 26,29,32,38 1948 6 30 12; 21 38,8 20,6 6,4 S 2,2+15 9 -
2220 6,13,30 1948 7 5 13; 53 29,9 57,7 6 S 9,+14 - -
2221 14,15,29, 32, 38 1948 7 24 6; 03 35,2 24,4 6,4 S 2,2+15 5 80
2222 38 1948 8 27 15; 16 37,4 21 6,2 S 14+15 - 40
2223 10 1948 9 7 8; 15 36,9 70,6 6,7 S 4+15 - 220
2224 32,38 1948 9 11 8; 52 37,2 23,2 6,5 S 2,7+15 8 110
2225 6,8,10,12,

13,23,26,30

1948 10 5 20; 12 38 58,3 7,3 S 1,4+16 9-10 18
2226 8, 10, 23,30 1948 10 6 1; 24 37,4 58,8 6 S 9,3+14 - 12
2227 32,38 1948 10 18 17; 43 35,1 23,4 5,7 S 5+14 - 15
2229 10 1949 3 4 10; 19 36,6 70,6 7,7 S ,+16 - 300
2230 6,13,14,30 1949 4 24 4; 22 27,3 56,5 6,3 S 1,7E+15 - -
2231 38 1949 6 17 4; 21 34 28,5 5,8 S 6+14 - 100
2232 10 1949 7 10 3; 53 39,2 70,8 7,4 S 1,7E+16 - 16
2233 10 1949 7 10 15; 19 39,1 71 5,8 S 6+14 - 10
2234 10 1949 7 10 15; 49 39,2 71,1 6,2 S 1,4+15 - 19
2235 10 1949 7 10 16; 24 39,1 71 6,2 S 1.4+15 - 14
2236 10 1949 7 19 17; 42 39,1 71,1 5,8 S 6+14 - 10
2237 26,29,32,38 1949 7 23 15; 03 38,6 26,3 6,7 S 4+15 9 10
2238 2, 3 8,10,12,

23,26,29, 32

1949 8 17 18; 44 39,4 40,9 6,7 S 4+15 18
2239 32 1949 11 23 16; 50 38,6 26,3 5,7 W 5+14 7 60
2240 6,30 1950 1 22 4; 07 27,4 52,8 6,1 S 1+15 - -
2241 30 1950 1 30 10; 03 33,6 45,5 5,8 S 6+14 - -
2242 6, 8, 10, 13,30 1950 5 9 11; 17 38,4 58,6 5,8 S 6+14 - 25
2243 10 1950 7 9 16; 10 36,8 71 6,4 S 2,2+15 - 240
2244 6,30 1950 9 24 22; 56 34,5 60,7 5,9 S 7,6+14 - -
2245 10 1951 1 4 3; 38 38,4 73,6 5,9 S 7,6+14 - 140
2246 10 1951 1 6 5; 19 36,6 70,9 6,6 S 3,+15 - 220
2247 32, 36 1951 1 30 23; 07 32,4 33,4 6,3 S 1/7+15 - -
2248 1, 10,29,32 1951 4 8 21; 38 36,6 35,9 5,8 S 6+14 8 50
2249 10 1951 4 14 4; 10 39,1 71,6 5,9 S 7,6+14 - 25
2250 38 1951 5 28 14; 16 31,8 27 6,2 S 14+15 - 100
2251 30 1951 6 9 11; 22 32,3 49,8 5,7 S 5+14 - 53
2252 10 1951 6 12 22; 40 36,7 70,4 6,1 S 1+15 - 240
2253 10, 12, 26, 29, 32 1951 8 13 18; 33 40,9 32,9 6,9 S 6+15 9 10
2254 6,30 1951 8 16 23; 52 28,2 57,3 5,7 S 5+14 - -

bgcolor=white>2285
1 2 3 4 5 6 7 8 9 10 11 12 13
2255 2, 3,10,26,

29, 32

1952 1 3 6; 03 40 41,7 5,8 S 6,1+14 7 40
2256 30 1952 1 31 0; 21 40 41,7 6 S 9,+14 - -
2257 32,38 1952 3 9 4; 45 38 21 5,7 S 5+14 6 -
2258 32 1952 3 19 1; 27 39,8 28,7 5,8 W 6+14 7 40
2259 10 1952 5 28 7; 47 37 70,8 6,1 S 1+15 - 230
2260 32, 38 1952 6 12 11; 00 34,8 26,2 6 S 9,3+14 5 56
2261 10 1952 7 5 17; 19 36,5 70,8 6,2 S 1,4+15 - 200
2262 32 1952 10 5 10; 54 37,5 20,8 5,8 W 6+14 7 -
2263 10 1952 10 10 18; 47 30,2 70 6,1 S 1+15 - 33
2264 10 1952 11 27 7; 20 36,6 70 6,2 S 1,4+15 - 150
2265 32,38 1952 12 17 23; 03 34,4 24,5 6,4 S 2,2+15 6 -
2266 38 1953 1 18 14; 16 37,7 21,2 6,1 S 1+15 - 90
2267 32 1953 2 7 22; 31 34,8 24,1 5,8 W 6+14 7 33
2268 6, 8, 10,12,

1^, 23,26, 30

1953 2 12 8; 15 35,4 54,9 6,5 S 2.7E+15 -
2269 38 1953 2 14 8; 43 35,5 26,5 6,2 S 1,4+15 - 110
2270 10, 12, 26, 29, 32 1953 3 18 19; 06 40 27,4 7,2 S 1,2+16 9 10
2271 38 1953 6 23 1; 53 35,7 25,3 6,1 S 1+15 - 100
2272 10 1953 7 9 19; 02 40,2 78 5,8 S 6+14 - 20
2273 9 1953 7 10 - 39,9 78,3 6 S 9,+14 - -
2274 10,38 1953 8 9 7; 41 38,4 20,7 6,2 S 1,4+15 - 14
2275 26, 29, 32 1953 8 11 3; 32 38,1 20,8 6,8 S 5+15 - 33
2276 26,29, 32 1953 8 12 9; 23 38,2 20,6 7,3 S 1,4+16 11 -
2277 29 1953 8 12 12; 05 38,1 20,8 6,1 S 1,1+15 - -
2278 10, 38 1953 8 12 14; 08 38,1 20,8 5,7 S 5+14 - 10
2279 32,41 1953 9 5 14; 18 37,9 23,1 5,7 S 5+14 7 12
2280 10,29, 32 1953 9 7 3; 59 41,1 33 6,4 S 2,2+15 8 40
2281 10, 14, 15,26,

29, 32

1953 9 10 4; 06 34,8 32,5 6,3 S 1,7+15 8 6
2282 38 1953 9 12 9; 23 38,3 20,8 7 S 7,6+15 - 6
2283 38 1953 9 12 12; 05 38,1 20,8 6,1 S 1+15 - 10
2284 32 1953 9 14 14; 56 38,5 20,9 5,7 W 5+14 7 -
29, 32, 38 1953 10 21 18; 39 38,6 21 6,1 S 1+15 8 -
2286 10 1953 11 5 8; 21 36,5 70,6 5,8 S 6+14 - 200
2287 10 1954 1 23 16; 06 37,4 72,5 5,8 S 6+14 - 9
2288 10 1954 2 26 18; 46 36,8 71,3 6 S 9,+14 - 120
2289 38 1954 3 21 18; 58 34,5 25 5,7 S 5+14 - 130
2290 10 1954 4 11 10; 53 36,6 70,6 6,4 S 2,2+15 - 200
2291 26 1954 4 20 - 39,8 22,1 7 S 7,6+15 - -
2292 12, 26, 29, 32,

33, 38

1954 4 30 13; 02 39,3 22,2 6,8 S 5+15 9 15
2293 32 1954 5 4 16; 45 39,3 22,2 5,7 W 5+14 7 -
2294 10 1954 7 10 22; 57 36,8 71,2 6,1 S 1+15 - 200
2295 10, 32, 38 1954 8 3 18; 18 40,1 24,5 5,8 S 6+14 7 35
2296 2,3 1954 10 24 0; 44 40 40 6 S 9,3+14 8-9 15
2297 2,3, 8,30 1954 10 30 23; 43 40,5 45,3 6 S 9,3+14 - -
2298 32 1954 12 23 16; 27 37,9 21,1 5,8 W 6+14 7 -
2299 10 1955 1 10 4; 25 37,2 70,8 5,8 S 6+14 - 100
2300 38 1955 1 9; 21 35,2 23,5 5,8 S 6+14 - 130
2301 38 1955 1 28 7; 42 33,9 23,6 6,2 S 1,4+15 - 130

1 2 3 4 5 6 7 8 9 10 11 12 13
2302 10 1955 2 18 22; 48 30,3 67,1 6,1 S 1,1+15 - 33
2303 32 1955 3 28 14; 45 37,7 21,2 5,7 W 5+14 7 -
2304 32 1955 4 13 20; 45 37,2 22,3 5,9 W 7,6+14 7 -
2305 9,10 1955 4 15 3; 41 39,9 74,6 7,1 S 9,3+15 - 52
2306 9,10 1955 4 15 4; 13 40 74,7 6,6 S ,+15 - 50
2307 26,29, 32, 38 1955 4 19 16; 47 39,3 23 6,1 S 1,1+15 8 6
2308 26, 29, 38 1955 4 21 7; 18 39,3 23,1 6 S 9,3+14 - -
2309 10 1955 5 14 13; 35 36,7 71 5,7 S 5+14 - 240
2310 10 1955 6 3 14; 02 36,9 70,8 6,3