Критерии принятия решений и их шкалы
Из схемы процесса обоснования решений, приведенной на рис. 1.5, видно, что этот процесс завершается фазой оценки альтернатив. Именно в рамках этой фазы напрямую работает принцип измерения.
При этом практически неразрывно, одновременно решаются два взаимосвязанных вопроса: выработка (формирование) критерия и получение оценок критерия для каждой из сформированного ЛПР множества допустимых альтернатив.Критерий (функция цели, показатель) - это специальная функция, заданная в номинальной, числовой или количественной шкале, областью определения которой служит множество альтернатив.
Критерий предназначен для измерения степени эффективности (вклада, полезности или ценности) каждой альтернативы в отношении достижения цели операции. Те значения, которые эта функция принимает, называют оценками критерия.
Измерение - это процесс приписывания объектам таких символов, сравнение значений которых позволяет делать выводы о связи объектов между собой. Для ТПР это означает следующее: если ЛПР удалось подобрать такой критерий для оценки альтернатив, что у одной из них оценка критерия выше, чем у других, то можно предположить, что, выбрав альтернативу с наибольшим (максимальным) значением оценки критерия, ЛПР тем самым выберет наилучшую альтернативу.
В дальнейшем будем считать, что это предположение верно и существует взаимно - однозначное соответствие вида:
(1.1)
где - альтернативы; - значения оценок критерия для альтернатив; - уровни полезности для ЛПР полученных значений оценок соответственно; - символ, означающий нестрогое превосходство для альтернатив и нестрогое неравенство для оценок (чисел); Û - знак двойной импликации ("тогда и только тогда", "необходимо и достаточно").
Соотношение (1.1) следует понимать так: если какая-то альтернатива не хуже какой-то другой (в нашем случае альтернатива не менее предпочтительнее, чем альтернатива ) то значение полезности для более предпочтительной альтернативы должно быть не ниже, чем для менее предпочтительной (в нашем случае функция полезности должна иметь значение не меньше чем . При этом мы обязательно будем полагать (и это особенно важно), что и обратное тоже верно (знак двойной импликации "тогда и только тогда" в выражении на это указывает).
Именно возможность "обратного прочтения" выражения (1.1) позволяет сделать важный вывод: если найдены альтернативы, обладающие максимальной полезностью, то они, скорее всего (с точностью до построенной модели u(Х) предпочтений) будут наилучшими решениями.
Таким образом, из соотношения (1.1) немедленно следует и формальное правило выбора наилучшей альтернативы:
, (1.2)
где - наилучшая альтернатива; - множество альтернатив.
Теория измерения разработала широкий арсенал разнообразных по своим свойствам шкал для измерения значений критериев. Эти шкалы позволяют в наибольшей степени обеспечить требование высокой информативности при решении задачи выбора наилучшей альтернативы и одновременно добиться достаточной простоты и экономии средств при измерениях.
Так, если целью измерения является разделение объектов (в нашем случае это альтернативы) на классы по признакам типа "да - нет", "свой - чужой", при годный - непригодный" и т.
п., то используют так называемые номинальные или (классификационные) шкалы. При этом любые формы представления оценки в номинальной шкале, которые не позволят отождествить объекты из разных классов между собой, будут одинаково подходящими. Так, часто при моделировании предпочтений в качестве градаций номинальных шкал используют шкалу целых чисел и даже бинарную шкалу со значениями (1; 0). Например, ЛПР может допустить считать все, что "да", - это единица, а все, что "нет", - это нуль.Над значениями оценок в номинальных шкалах можно производить любые взаимно-однозначные преобразования и при этом смысл высказываний, задаваемых выражением (1.1), сохраняется.
Если целью измерения является упорядочение объектов одного класса в соответствии с интенсивностью проявления у них какого-то одного общего свойства, то наиболее выразительной и экономной будет ранговая, или порядковая шкала. Например, если общим для стратегий осуществления экспансии на рынке будет признак "объем продаж", то имеющиеся у ЛПР альтернативы осуществления экспансии можно, например, регламентировать в порядковой шкале со значениями "высокий", "средний", "низкий". Здесь также можно присвоить градациям шкалы числовые значения - ранги. Шкала в таком случае называется ранговой. Например, если первому в упорядоченном ряду объекту присвоить ранг, равный 1, второму - равный 2, и т. д., то получим так называемую прямую ранговую шкалу. Возможно ранжирование и в обратных ранговых шкалах, где более предпочтительному объекту присваивается больший, а не меньший ранг. Оценки в ранговых шкалах допускают любые монотонно возрастающие или монотонно убывающие преобразования.
Номинальные и ранговые шкалы относят к классу так называемых качественных шкал, то есть шкал, позволяющих выносить не более чем вербальные (на неформальном, качественном уровне) оценки и суждения.
Однако в практике чрезвычайно часто встречаются случаи, когда простого, качественного суждения об упорядочении альтернатив недостаточно.
Например, ЛПР для принятия решений нужно не просто узнать, что одна из альтернатив осуществления экспансии на рынке обеспечивает объем продаж выше, чем другая. Ему еще нужно получить представление о том, насколько или во сколько раз достигаемый для альтернатив уровень продаж выше (или ниже). В подобных ситуациях для измерения значений критериев применяют наиболее совершенный класс шкал - количественные шкалы.Подклассами количественных шкал выступают интервальная шкала, шкала отношений и абсолютная шкала - самая совершенная из всех шкал. Абсолютная шкала допускает только тождественные преобразования над ее значениями. Промежуточное положение (в смысле совершенства) между качественными и количественными шкалами занимает числовая, балльная шкала. В этой шкале оценки критериев выражаются в виде чисел, баллов, начисляемых по уcтановленным ЛПР правилам.
Что касается свойств балльных шкал, то чем меньше у них градаций (например, 3-5 числовых градаций) и чем проще правила начисления баллов, тем ближе такие шкалы к качественным, ранговым. И наоборот, чем число градаций больше и чем сложнее правила начисления баллов, тем балльная шкала ближе по своим свойствам и возможностям к количественной, интервальной.
Итак, чтобы воспользоваться формальной моделью (1.2) для выбора наилучшей альтернативы, следует решить задачу измерения.
В самом начале ЛПР проводит углубленный анализ цели, проникается пониманием полезности достигаемых результатов для решения проблемы. Именно здесь, на этом шаге ЛПР работает по технологии "номинаций" в простейшей, качественной шкале. Используя вербальное описание цели операции, ЛПР тщательно моделирует цель, формально воспроизводя ее в общем случае в виде вектора требуемого результата. Затем, действуя по принципу "вот эти частные критерии отнести к оценкам затрат, а те - к оценкам эффекта, формирует в общем случае векторный критерий W. Далее проводится содержательный анализ состава и генезиса (происхождения) факторов, задающих тип механизма ситуации.
Исходя из представления о цели и механизме ситуации, ЛПР формирует концептуальное множество альтернатив, принципиально приводящих к достижению цели операции. После этого концептуальное множество альтернатив ЛПР содержательно анализируется с целью выделения из него физически реализуемых альтернатив. Это значит, что каждую из альтернатив концептуального множества ЛПР проверяет на ее приемлемость как в отношении достижения цели операции, так и в отношении удовлетворения ограничений по времени на подготовку и реализацию этой альтернативы в ходе операции и требуемых ресурсов, необходимых для физической реализации альтернативы.
Когда концептуальные оценки затрат и эффекта (то есть оценки в номинальной шкале) получены, можно уже формально отсеять менее предпочтительные из концептуальных альтернатив. Менее предпочтительными при этом следует считать те из физически реализуемых концептуальных альтернатив, которые одновременно уступают хотя бы одной из других одновременно по оценкам эффекта и затрат.
В процессе подобного "номинирования" получают физически реализуемое допустимое множество альтернатив, состоящее из "нехудших" компонентов.
Далее для каждой альтернативы из множества физически реализуемых альтернатив следует произвести измерение значений всех частных компонентов векторного критерия в более совершенной шкале - ранговой или балльной, получить оценки и сделать выводы о "тенденциях", проявляющихся в изменении значений оценок критериев при изменениях значений управляемых факторов, имеющихся в описании альтернатив.
Изученные на основе измерения тенденции будут служить главными ориентирами при проверке адекватности более тонких моделей, позволят на количественном уровне произвести сравнения оценок альтернатив.
На третьем шаге процесса измерения строят модели для измерения оценок критериев в более совершенных, количественных шкалах типа интервальных или шкал отношений. Таким образом, более точно устанавливают не только тенденции, но и пропорции в значениях оценок. На этом же шаге измерения формируют функцию полезности для ЛПР оценок критериев, также, как правило, в шкале интервалов.