§11. Основные элементарные функции
Основными элементарными функциями называются следующие: степенная функция , где a любое действительное число; показательная функция , где а>0, a≠1; логарифмическая функция , где а>0, a≠1; тригонометрические функции y = sinx, y = cosx,
y = tgx, y = ctgx; обратные тригонометрические функции y = arcsinx, y = arccosx, y = arctgx, y = arcctgx.
Степенная функция. Область определения степенной функции зависит от показателя a. Эта функция при любом a определена в интервале 0 < х < +¥, то есть для всех положительных значений х. При a натуральном областью определения является вся числовая ось. Множеством значений функции будет интервал 0 < у < +¥ при a четном и промежуток –¥ < у < +¥ при a нечетном (рис. 1).
Рис. 1
Показательная функция. Областью определения показательной функции является вся числовая ось, то есть промежуток (–¥; + ¥), а множеством значений функции - промежуток (0; + ¥) (рис. 2).
Рис. 2
Логарифмическая функция. Областью определения логарифмической функции является промежуток , а множеством значений функции - промежуток (рис. 3).
Рис.
3Тригонометрические функции. Областью определения функций y = sinx и y = cosx является промежуток , а множеством значений функций –отрезок [–1; 1] (рис. 4, 5).
Рис. 4 Рис. 5
Функция определена на всей числовой оси, кроме точек , т.е. область определения этой функции есть совокупность интервалов
.
Функция определена на всей числовой оси, кроме точек , т.е. область определения этой функции состоит из интервалов
.
Множеством значений функций и является промежуток (рис. 6 и 7).
Рис. 6 Рис. 7
Обратные тригонометрические функции. Областью определения функций y = arcsinx и
y = arccosx является отрезок [– 1; 1]. Множеством значений функции y = arcsinx является отрезок , а функции y = arccosx –– отрезок (рис. 8 и 9).
Рис. 8 Рис. 9
Областью определения функций y = arctgx и y = arcсtgx является промежуток . Множеством значений функции y = arctgx будет интервал , а функции y = arcсtgx –– интервал (рис. 10 и 11).
Рис. 10 Рис. 11