<<
>>

Решение для шестого сочленения

Необходимо получить такую ориентацию схвата, чтобы поднять объект манипулирования. Для этого надо так расположить схват, чтобы s=y6. Проецируя систему координат схвата (n, s, a) на плоскость x5y5, получаем (рис.

8.4):

, , (8-18)

где - второй столбцы матрицы , a n и s– соответственно нормальный и касательный векторы матрицы .

Таким образом, для имеем:

=

=,

. (8-19)

Рисунок 8.4. Решение для 6-го сочленения

Итак, для шестизвенного манипулятора «Пума» существует восемь решений обратной задачи кинематики. Решения для первых трёх присоединённых углов обеспечивают требуемое расположение руки (первых трёх звеньев), а углы обеспечивают заданную ориентацию схвата. Для первых трёх присоединённых углов существует 4 решения: два - для манипулятора с левосторонней конфигурацией и два – с правосторонней. Для каждой конкретной конфигурации манипулятора равенства (7-18), (7-26),

(8-7), (8-15), (8-17), (8-19) дают решение обратной задачи кинематики, причем также является решением этой задачи (если ПЕРЕКЛЮЧАТЕЛЬ «включен»).

<< | >>
Источник: Е.С.Шаньгин. УПРАВЛЕНИЕ РОБОТАМИ И РОБОТОТЕХНИЧЕСКИМИ СИСТЕМАМИ. Конспект лекций. Уфа-2005. 2005

Еще по теме Решение для шестого сочленения: