Уравнения движения манипулятора с вращательными сочленениями
Конкретизация равенств (10-13) – (10-21) для шестизвенного манипулятора с вращательными сочленениями приводит к следующему виду членов уравнения, определяющих динамику движения манипулятора:
Матрица .
, (10-22)
где
,,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
.
Вектор . Коэффициенты при обобщённых скоростях в выражениях (10-18), (10-19) для центробежных и кариолисовых сил можно сгруппировать в матрицы
вида:
,
. (10-23)
Пусть скорости изменения всех шести присоединенных переменных манипулятора характеризуются вектором :
. (10-24)
С учетом (10-23) и (10-24) равенство (10-19) можно представить в виде следующего произведения матриц и векторов:
. (10-25)
Здесь индекс i указывает номер сочленения (), в котором измеряются моменты и силы центробежного и кориолисового типа.
. (10-26)
Вектор гравитационных сил . Из равенства (10-21) имеем:
, (10-27)
где
,
,
,
,
,
.
Коэффициенты в выражениях (10-18) – (10-21) являются функциями как присоединенных переменных, так и динамических параметров манипулятора.
1. Коэффициенты , определяемые равенством (10-21), учитывают силу тяжести, действующую на каждое из звеньев манипулятора.
2. Коэффициенты , определяемые равенством (10-18), устанавливают связь действующих в сочленениях сил и моментов с ускорением присоединенных переменных. В частности, при i=k коэффициент
связывает момент
, действующий в i-м сочленении, с ускорением i-й присоединенный переменной. Если
, то
определяет момент (или силу), возникающий в i-м сочленении под действием ускорения в k-м сочленении. Поскольку матрица инерции симметрична и
то
.
3. Коэффициенты , определяемые равенствами (10-19) и (10-20), устанавливают связь действующих в сочленениях сил и моментов со скоростями изменения присоединенных переменных. Коэффициент
определяет связь момента, возникающего в i-м сочленении в результате движения в k-м и m-м сочленениях, со скоростями изменения k-й и m-й присоединенных переменных. В соответствии с физическим смыслом
.
При вычислении рассмотренных коэффициентов полезно знать, что некоторые из этих коэффициентов могут иметь нулевые значения по одной из следующих причин:
1.
Конкретная кинематическая схема манипулятора может исключить динамическое взаимовлияние движений в некоторых парах сочленений (коэффициенты
2. Некоторые из коэффициентов присутствуют в формулах (9-20) и (10-19) чисто фиктивно, будучи нулевыми в соответствии с физическим смыслом. Например, коэффициент
всегда равен нулю, так как центробежная сила, порожденная движением в i-м сочленении, на само i-е сочленение влияния не оказывает, хотя и влияет на другие сочленения, т.е.
при
.
3. Некоторые из динамических коэффициентов могут принимать нулевые значения в отдельные моменты времени при реализации определённых конфигураций манипулятора