<<
>>

2.2 Критерий Байеса

Критерий Байеса (принцип математического ожидания) предполагает полное доверие ЛПР известным вероятностям состояний окружающей среды. Следовательно, данная задача – это задача принятия решения в условиях риска.

Показатель эффективности стратегии Аi по критерию Байеса находится по формуле:

Z = ,

гдеm – количество строк матрицы, заданной в условии;

n – количество столбцов матрицы, заданной в условии;

qj – заданные вероятности ;

аij – элементы матрицы, заданной в условии.

Для случая оптимизации потерь критерий будет таким:

Z = #

Заметим, что – это математическое ожидание стратегии Аi . Таким образом, исходную матрицу необходимо дополнить справа еще одним столбцом, в который нужно внести значения математических ожиданий всех стратегий:

Пример вычислений для первой строки:

= 0,33 + 0,27 + 0,153 + 0,115 + 0,256 = 0,6 + 1,4 + 0,45 + 1,5 + 1,5 = 5,75

Далее в добавленном столбце нужно найти наибольший элемент (наибольшее математическое ожидание). Строка, в которой он стоит и будет оптимальной стратегией. Необходимо заметить, что наибольших элементов может быть несколько, тогда и оптимальных стратегий соответственно будет несколько.

В нашем случае наибольший элемент 5,95 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А3, т.е. средства фонда вам нужно вложить в третий проект.

Ответ А3 .

<< | >>
Источник: Ю.О. Матузко. Теория принятия решений.. 2009

Еще по теме 2.2 Критерий Байеса:

  1. 1.3. Методы обнаружения сигналов с известными параметрами
  2. 1.3.2. Методы классификации с предварительной обработкой сигнала
  3. Математические и логические "перлы" у Жана Тироля
  4. Содержание дисциплины
  5. Перечень вопросов к зачету на втором курсе
  6. 4.2. СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ
  7. 4.3. ПРАКТИЧЕСКИЕ ЗАНЯТИЯ
  8. Вопрос 11. Валидность качественных исследований.
  9. 2o. Критерий Байеса – Лапласа.
  10. 4о. Пример и выводы.
  11. 2о. Критерий Ходжа–Лемана.
  12. 4о. BL (MM) - критерий.
  13. Содержание
  14. 2.2 Критерий Байеса
  15. 2.3 Критерий Лапласа (Бернулли)