<<
>>

2.3 Критерий Лапласа (Бернулли)

Критерий Лапласа (принцип недостаточного основания) предполагает недоверие ЛПР известным вероятностям состояний окружающей среды. Вероятности состояний окружающей среды считаются одинаковыми и равными .

Следовательно, данная задача – это задача принятия решения в условиях риска с вероятностями .

Показатель эффективности стратегии Аi по критерию Лапласа находится аналогично критерию Байеса с вероятностями :

Z = = ,

Заметим, что нет необходимости вычислять эти математические ожидания. Достаточно просто просуммировать элементы строк матрицы и выбрать из них максимальную сумму:

Z =

Для случая оптимизации потерь критерий будет таким:

Z = #

Таким образом, исходную матрицу необходимо дополнить справа еще одним столбцом, в который нужно внести значения сумм элементов строк всех стратегий:

Далее в добавленном столбце нужно найти наибольший элемент. Строка, в которой он стоит и будет оптимальной стратегией. Необходимо заметить, что наибольших элементов может быть несколько, тогда и оптимальных стратегий соответственно будет несколько.

В нашем случае наибольший элемент в добавленном столбце 34 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А1 , т.е. инвестор должен выбрать для вложения первый проект.

Ответ А1 .

<< | >>
Источник: Ю.О. Матузко. Теория принятия решений.. 2009

Еще по теме 2.3 Критерий Лапласа (Бернулли):

  1. Содержание дисциплины
  2. Перечень вопросов к зачету на втором курсе
  3. I ГЕНЕЗИС НАУКИ
  4. 4.2. СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ
  5. Содержание
  6. 2.3 Критерий Лапласа (Бернулли)