<<
>>

Числовые характеристики случайных величин

Различают следующие группы числовых характеристик: характеристики положения (математическое ожидание, мода, медиана, квантиль и др.), рассеивания (дисперсия, среднеквадратичное отклонение и др.), характеристики формы плотности распределения (показатель асимметрии, эксцесса и др.).

Математическим ожиданием (средним значением по распределению) называется действительное число, определяемое в зависимости от типа СВ Х формулой:

mX = M[X] =

Математическое ожидание существует, если ряд (соответственно интеграл) в правой части формулы сходится абсолютно. Если mX = 0, то СВ Х называется центрированной (обозначается ).

Свойства математического ожидания:

1. M[C] = C, где С - константа;

2. M[C?X] = C?M[X];

3. M[X+Y] = M[X]+M[Y], для любых СВ X и Y;

4. M[X?Y] = M[X]?M[Y] + KXY, где KXY = M[] - ковариация СВ X и Y.

Начальным моментом k-го порядка (k = 0, 1, 2, ...) распределения СВ Х называется действительное число, определяемое по формуле:

nk = M[Xk] =

Центральным моментом k-го порядка распределения СВ Х называется число, определяемое по формуле:

mk = M[(X-mX)k]=

Из определений моментов, в частности, следует, что: n0 = m0 = 1, n1 = mX, m2 = DX = sX2.

Модой СВНТ называется действительное число Mo(X) = x*, определяемое как точка максимума ПР f(x).

Мода может иметь единственное значение (унимодальное распределение) или иметь множество значений (мультимодальное распределение).

Медианой СВНТ называется действительное число Mе(X) = x0, удовлетворяющее условию: P{X < x0} = P{X ? x0} или F(x0) = 0,5.

Квантилем уровня р называется действительное число tp, удовлетворяющее уравнению: F(tp) = p. В частности, из определения медианы следует, что x0 = t0,5.

Дисперсией СВ Х называется неотрицательное число D[X] = DХ, определяемое формулой:

DX = M[(X-mX)2] = M[X2] - mX2 =

Дисперсия существует, если ряд (соответственно интеграл) в правой части равенства сходится. Свойства дисперсии:

1. D[C] = 0, где С - константа;

2. D[C?X] = C2?D[X];

3. D[X-C] = D[X], дисперсия, очевидно, не меняется от смещения СВ X;

4. D[X + Y] = D[X] + D[Y] + 2?KXY, где KXY = M[] - ковариация СВ X и Y;

5.

Неотрицательное число sХ = называется среднеквадратичным отклонением СВ X. Оно имеет размерность СВ Х и определяет некоторый стандартный среднеквадратичный интервал рассеивания, симметричный относительно математического ожидания. (Величину sХ иногда называют стандартным отклонением). СВ Х называется стандартизованной, если mX = 0 и sХ = 1. Если величина Х = const (т.е. Х не случайна), то D[X] = 0.

Показателем асимметрии ПР является коэффициент асимметрии (“скошенности”) распределения: A = m3/s3X. Показателем эксцесса ПР является коэффициент эксцесса (“островершинности”) распределения: E = (m4/s4X)-3. В частности, для нормального распределения E = 0.

<< | >>
Источник: Ответы по теории вероятности. 2017

Еще по теме Числовые характеристики случайных величин:

  1. Определение числовых характеристик случайной величины суммы выплат страховщика
  2. 1.2. Числовые характеристики случайных величин
  3. 1 .4. Основные законы распределения случайных величин
  4. Моделирование случайных величин.
  5. Числовые характеристики дискретной случайной величины
  6. Числовые характеристики дискретных случайных величин.
  7. Числовые характеристики непрерывных случайных величин.
  8. 8.Практическое занятие №8 « Нахождение вероятности событий, функции распределения и числовых характеристик дискретной случайной величины»
  9. Числовые характеристики случайных величин
  10. §10. Дискретные случайные величины и их характеристики
  11. Числовые характеристики случайных величин
  12. Числовые характеристики СЛУЧАЙНОГО ВЕКТОРА
  13. Числовые характеристики случайных величин
  14. 3.4. Числовые характеристики случайных величин.
  15. 5.1. Понятие о системе случайных величин.
  16. 5.6. Числовые характеристики системы двух случайных величин.