<<
>>

2.1. Независимые испытания. Формулы Бернулли.

В настоящем разделе мы изучим основные закономерности, относящиеся к одной из важнейших схем теории вероятностей — схеме последовательных независимых испытаний. В это понятие мы вкладываем следующий смысл.

Под испытанием(опытом) мы станем понимать осуществление определенного комплекса условий, в результате которого может произойти то или иное элементарное событие пространства U элементарных событий. Математической моделью последовательности п испытаний является новое пространство элементарных событий, состоящее из точек , где - произвольная точка пространства U, отвечающая испытанию с номером i.

Пусть испытание состоит в подбрасывании игральной кости. Пространство элементарных состояний состоит из 6 точек. Пространство ,соответствующее трем испытаниям, состоит из 216 точек(n=63).

Пусть под испытанием понимается проверка длительности безотказной работы полупроводникового прибора под определенным напряжением. Пространство элементарных событий состоит из множества точек полупрямой . Пространство состоит из множества точек , координаты которых принимают неотрицательные значения, равные длительностям безотказной работы соответственно приборов с номерами 1,2,...,n.

Предположим, что для s-го испытания пространство U разбито на k несовместимых случайных событий , т.

е. предположим, что

Событие назовем i-м исходом при s-м испытании. Обозначим вероятность i-го исхода при s-м испытании через = Р ().

Bernylli Обозначим через событие, состоящее из всех тех точек пространства , для которых . Если в пространстве Un имеет место равенство при любых - то испытания называются независимыми.

В дальнейшем мы ограничимся случаем, когда вероятности событий не зависят от номера испытания s; обозначим в этом случае ; в силу несовместимости и единственной возможности исходов очевидно, имеем . Эта схема впервые была рассмотрена Я. Бернулли в важнейшем частном случае ; по этой причине указанный случай носит название схемы Бернулли.

В схеме Бернулли обычно полагают .

Из определения независимых испытаний вытекает следующий результат:

Теорема 1. Если данные п испытаний независимы, то любые т из них также независимы.

Для простоты ограничимся случаем , поскольку переход к общему случаю не встречает затруднений. Действительно, имеет место очевидное равенство

из которого следует, что

По определению это означает, что первые п—1 испытаний независимы. Простейшая задача, относящаяся к схеме независимых испытаний, состоит в определении вероятности того, что при п испыта­ниях событие А наступит т раз, а остальные п—т раз наступит противоположное событие , обозначим это событие В. Тогда

(2.1.1)

Здесь Аi – событие состоящее в том, что событие А произойдет в i- ом испытании. Событие В представляет собой сумму несовместных событий, тогда согласно теореме сложения вероятностей получаем

(2.1.2)

Вероятность каждого слагаемого в данной сумме по теореме умножения для независимых событий равна . По теореме сложения вероятностей искомая вероятность равна сумме только что вычисленных вероятностей для всех различных способов т появлений события А и n—т не появлений среди п испытаний.

Число таких способов, как известно из теории сочетаний, равно ; следовательно, искомая вероятность равна
(2.1.3)

Так как все возможные несовместимые между собой исходы п испытаний состоят в появлении события 0 раз, 1 раз, 2 раза, ..., n раз, то ясно, что

(2.1.4)

Легко заметить, что вероятность равна коэффициенту при в разложении бинома по степеням x.

Исследуем далее как ведет себя вероятность при различных значениях m. Найдем m, при котором вероятность является наибольшей. Для этого определим отношение

Из полученного соотношения следует:

1) Пусть - в данном случае вероятность возрастет с ростом m.

2) Пусть - тогда предыдущая и последующая вероятности выравниваются.

3) Пусть - в данном случае вероятность уменьшается с ростом m.

Таким образом, с увеличением m сначала возрастает, затем достигает максимума и при дальнейшем росте m убывает.

При этом, если является целым числом, то максимальное значение вероятность принимает для двух значений m, а именно и . Если же не является целым числом, то максимальное значение вероятности достигается при , равном максимальному целому числу, большему из и . Число называют наивероятнейшим значением и обозначают через .

Пример. Вероятность попадания при одном броске в кольцо равна 0,4. Баскетболист совершил 10 бросков. Каково наивероятнейшее значение числа попаданий в кольцо?

<< | >>
Источник: Теория вероятностей. (Учебное пособие). 2004

Еще по теме 2.1. Независимые испытания. Формулы Бернулли.:

  1. 4. Формула изобретения
  2. 1 .4. Основные законы распределения случайных величин
  3. 4.1. Теоретические основы метода
  4. Словарь ключевых терминов
  5. Формула изобретения (полезной модели)
  6. Содержание дисциплины
  7. Повторение испытаний. Формула Бернулли.
  8. Биноминальное распределение.
  9. Распределение Пуассона.
  10. Теорема Бернулли.
  11. Перечень вопросов к зачету на втором курсе
  12. 4.2. СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ
  13. §4. Условные вероятности. Независимые и зависимые события