4. Уравнения высших степеней сводящиеся к квадратным.
1.Рассмотрим уравнение, у которого одна переменная находится в четвертой степени, т.е. дано уравнение вида
(13)
Для решения такого уравнения, выразим через , получим,
(14)
Решая это уравнение по следующим формулам, имеем
и (15)
Пример.
Решить уравнение.Выразим через , получим , решая это уравнение по формулам (19) получим
Отсюда получаем множество корней (решений)
Ответ:
2. Рассмотрим уравнение, у которого одна степень находится в пятой степени, т.е. имеется уравнение вида
(16)
Для решения такого уравнения выберем переменную, у которой степень самая меньшая, по сравнению с другими степенями, это будет переменная , вынося ее за скобку получим
(17)
Отсюда , т.е. мы получили некоторое множество нулей. Уравнение , решается через дискриминант.
Пример. Решить уравнение
Вынесем за скобку, получим , отсюда , который имеет множество корней (0; 0; 0). Далее, решая уравнение получим и . Таким образом, получили множество решений (0; 0; 0; -2; ).