Лекция 4. Использование оптимизационных моделей при принятии решений
Основные понятия, включенные в систему тренинг-тестирования:
задачи математического программирования; задачи линейной оптимизации (линейного программирования); задачи нелинейной оптимизации (нелинейного программирования); динамическое программирование; стохастическое программирование; целевая функция задач математического программирования; допустимое решение (допустимый план); оптимальное допустимое решение; задачи целочисленной оптимизации; частично целочисленные задачи.
Успешность решения подавляющего большинства экономических задач зависит от наиболее эффективного способа использования ресурсов (денег, товаров, сырья, оборудования, рабочей силы и др.). Именно эффективностью использования, как правило, ограниченных, ресурсов определяется конечный результат деятельности любой экономической системы (фирмы, предприятия, отрасли).
Экономическая суть методов оптимизации заключается в том, что исходя из наличия определенных ресурсов выбирается такой способ их использования (распределения), при котором обеспечивается максимум (или минимум) интересующего ЛПР показателя.
Задачи нахождения значений параметров, обеспечивающих экстремум функции при наличии ограничений, наложенных на аргументы (независимые переменные) , носят общее название задач математического программирования.
Трудности, возникающие при решении задач математического программирования, определяются, в частности:
· видом функциональной зависимости критерия эффективности, называемого также целевой функцией, от независимых переменных;
· размерностью задачи, то есть количеством независимых переменных;
· видом и количеством ограничений, которым удовлетворяют независимые переменные.
Среди задач математического программирования самыми простыми и наиболее хорошо изученными являются так называемые задачи линейного программирования (линейной оптимизации).
Для них характерно то, что целевая функция линейно зависит от , а также то, что ограничения, накладываемые на независимые переменные, имеют вид линейных равенств или неравенств относительно этих переменных.Такие задачи часто встречаются на практике – например, при решении проблем, связанных с распределением ресурсов, планированием производства, организацией работы транспорта и т.д. Во многих случаях расходы и доходы линейно зависят от количества закупленных или утилизированных средств (например, суммарная стоимость партии товаров линейно зависит от количества закупленных единиц; оплата перевозок производится пропорционально весам перевозимых грузов и т.п.).
Задачи линейного программирования, естественно, не исчерпывают все возможные типы взаимосвязей экономических параметров. Более сложными для анализа и численного решения являются задачи нелинейного программирования (нелинейной оптимизации), характеризуемые нелинейной зависимостью целевой функции и (или) функций-ограничений от независимых переменных .
Отметим еще два типа задач математического программирования, имеющих широкую распространенность в практике принятия управленческих решений.
Динамическое программирование служит для выбора наилучшего плана выполнения многоэтапных действий. В общем виде постановка задачи динамического программирования сводится к следующему. Имеется некоторая управляемая операция (целенаправленное действие), распадающаяся (естественно или искусственно) на ряд шагов (этапов). На каждом этапе осуществляется распределение и перераспределение ресурсов (управление) с целью улучшения ее результата в целом. Задача динамического программирования – определить оптимальное управление на каждом шаге и, тем самым, оптимальное управление всей операцией в целом.
Следует отметить также задачи стохастического программирования. Особенность данного класса задач заключается в том, что ищется оптимальное решение в условиях неполной определенности, когда ряд параметров, входящих в целевую функцию и ограничения, представляют собой случайные величины.
Решение задач динамического и стохастического программирования, а также ряда других задач (например, параметрического программирования), выходит за рамки настоящего курса лекций.