3.2. Метод Ньютона для системы нелинейных уравнений
В основе метода Ньютона для системы уравнений лежит использование разложения функций в ряд Тейлора, причем члены, содержащие вторые производные (и производные более высоких порядков), отбрасываются.
Пусть приближенные значения неизвестных системы (например, полученные на предыдущей итерации) равны соответственно . Задача состоит в нахождении приращений (поправок) к этим значениям , благодаря которым решение исходной системы запишется в виде: . Проведем разложение левых частей уравнений исходной системы в ряд Тэйлора, ограничиваясь лишь линейными членами относительно приращений:
Поскольку левые части этих выражений должны обращаться в нуль, то можно приравнять к нулю и правые части:
в матричном виде:
Значения и их производные вычисляются при .
Определителем последней системы является якобиан:
.
Для существования единственного решения системы якобиан должен быть отличным от нуля на каждой итерации.
Таким образом, итерационный процесс решения системы нелинейных уравнений методом Ньютона состоит в определении приращений к значениям неизвестных на каждой итерации.
Счет прекращается, если все приращения становятся малыми по абсолютной величине:.
В методе Ньютона также важен удачный выбор начального приближения для обеспечения хорошей сходимости. Сходимость ухудшается с увеличением числа уравнений системы. Итак, за расчетную формулу примем
или .
Сходимость метода. Теорема. Пусть в некоторой окрестности решения системы нелинейных уравнений функции дважды непрерывно дифференцируемы и определитель матрицы Якоби не равен нулю. Тогда найдется такая малая – окрестность решения , что при произвольном выборе начального приближения из этой окрестности, итерационная последовательность метода Ньютона не выходит за пределы окрестности и справедлива оценка: , – метод сходится с квадратичной скоростью.
В качестве примера можно рассмотреть использование метода Ньютона для решения системы двух уравнений: , где и – непрерывно дифференцируемые функции. Пусть начальные значения неизвестных равны . После разложения исходной системы в ряд Тэйлора можно получить:
Предположим, что якобиан системы при и отличен от нуля:
.
Тогда значения и можно найти, используя матричный способ следующим образом:
.
Вычислив значения и можно найти и следующим образом:
.
Величины, стоящие в правой части, вычисляются при и .
Критерий окончания. Будем считать, что заданная точность достигнута, если или .
Пример. Методом Ньютона решить систему двух уравнений:
с точностью до 0,001.
Решение.
1) Начальные приближения можно определить графическим способом. Для этого перепишем систему в виде:
Первое из преобразованных уравнений определяет эллипс, а второе – гиперболу. Данная система имеет два решения. Для уточнения выбирают одно из них, принадлежащее области и .
За начальное приближение принимают и .
2) Находим
0,5 | -0,1052 | 2 | -8,76 | 49,32 |
-0,46 | -0,3848 | 5 | 2,76 | |
0,5742 | 0,0114 | 2,2968 | -8,7306 | 51,2203 |
-0,4551 | 0,0052 | 5,1484 | 2,7306 | |
0,5727 | 0,00006 | 2,2908 | -8,7252 | 51,1375 |
-0,4542 | -0,00011 | 5,1454 | 2,7252 | |
0,5727 | ||||
-0,4542 |
Поскольку , то .
Окончательный ответ: и .