<<
>>

Формула Тейлора.

Нередко вычисление значений функции y = f(x) при конкретных значениях х оказывается затруднительным. Один из эффективных приемов в этом случае – замена функции степенным многочленом (полиномом) вида: Pn(x – a) = C0 + C1(x – a) + C2(x – a)2 + … + Cn(x – a)n (1) значение которого при х = а равно значению функции f(а).

Если функция y = f(x) дифференцируема (n + 1) раз в некоторой окрестности точки а, то коэффициенты Сi можно определить так: потребуем, чтобы в точке а выполнялись условия , т.е. чтобы в точке а были равны значения соответствующих производных. Получим:

f(а)= C0; f `(a) = C1; f ``(a) = 2C2 = C2 ?2! …… ; f(n)(a) = Cn ? n!

где n! = n(n –2)(n –3) … (n – k) … 3 ? 2 ? 1 (символ n! называется n – факториал). Отсюда легко находятся все (3.29).

Подставив в (1) получим: (3.30)

Очевидно, что совпадая при х = а, в других точках значения f(х) и Рn(x) отличаются. Обозначив это отличие через Rn(x) = f(x) – Pn(x) получим:

(3.31)

Величину Rn(x) называют остаточным членом. Для значений х, при которых остаточный член мал, многочлен Рn(x) дает приближенное значение f(x). Оценить величину Rn(x) при различных х позволяет выражение

, где a < x < x (3.32).

(Форма Лагранжа для остаточного члена). Величину x можно представить в виде: x = а + q(х – а), где 0 < q < 1 и тогда (3.32) примет вид

(3.32`)

(Очевидно, что, если х расположено в достаточно малой окрестности а. величина Rn при достаточно большом n может быть достаточно мала, чтобы обеспечить требуемую точность).

Выражение (3.31), называется формулой Тейлора. Частный случай ее при а = 0 (3.31`)

где , 0 < q < 1 называется формулой Маклорена. Используя правила дифференцирования, несложно получить разложения многих функций по формуле Маклорена. Приведем некоторые из них:

(3.33)

(3.34)

(3.35)

Формула Тейлора может быть применена и для раскрытия неопределенностей вида и . Функции в числителе и знаменателе дроби «раскладываются» по формуле Тейлора и, после некоторых преобразований, предел вычисляется.

сокращается; все члены сумм в числителе и знаменателе содержание х (включая остаточные члены в (3.34) и (3.35)) в пределе равны нулю) = 1.
Пример: ( с учетом соотношений (3.34) и (3.35)) = (

Контрольные вопросы.

1) Какую роль играют в аппарате дифференциального исчисления теоремы Роля, Лагранта, Коши?

2) Можно ли применять правило Лопиталя при неопределённости вида 0;?

3) Можно ли с помощью формулы Тейлора приближённо представить (аппроксимировать) произвольную функцию f(x) в виде многочлена?

4) Как выглядит формула Маклорена?

5) Можно ли с помощью формулы Тейлора для раскрытия неопределённостей вида и ?

<< | >>
Источник: Гофман В.Г., Брусник Н.А., Семёнова С.В.. Высшая математика. Учебное пособие для студентов технологических и механических специальностей, всех форм обучения. Часть 2. - МГУТУ, 2004. 2004

Еще по теме Формула Тейлора.:

  1. 2.1. Ф. Тейлор - основоположник школы научного управления
  2. § 30. Формула Тейлора
  3. § 31. Представление функций sin ж, cos ж, In {1 + ж), (1. -+¦ ж)01 с помощью формулы Тейлора
  4. § 32. Приложение формулы Тейлора
  5. Вопросы для самопроверки
  6. ПРИЛОЖЕНИЕ.
  7. Формула Тейлора.
  8. Содержание дисциплины
  9. Формула Тейлора.
  10. Формула Маклорена.
  11. Представление некоторых элементарных функций по формуле Тейлора.
  12. Метод Рунге – Кутта.
  13. Ряды Тейлора и Лорана.
  14. Перечень вопросов к экзамену на первом курсе
  15. 4.2. СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ
  16. Тема 16. Основные теоремы о дифференцируемых функциях и их приложения.
  17. Экзаменационные вопросы:
  18. Лекция 8 Ряд Тейлора
  19. 24. Ряд Тейлора