<<

1. Неопределенные и определенные интегралы.

Множество первообразных функции называется неопределенным интегралом. Такой неопределенный интеграл обозначается таким образом:

Где - подынтегральная функция, - подынтегральное выражение, - постоянная интегрирования.

Пример: Вычислить интеграл

Находим первообразную для функции , получим , поэтому

Пример: Найти

Найдем первообразную для функции , получим , поэтому

Пример: Найти

Применяем метод непосредственного интегрирования, получим

Пример: Найти

Воспользуемся методом подстановки, получим

Тогда

Пример: Найти

Воспользуемся методом интегрирования по частям, получим

Отсюда

Пример. Найти

Применим метод интегрирования по частям, получим

Отсюда

Рассмотрим интеграл вида , такой интеграл называется определенным.

Число а – называется нижним пределом, а число b – верхним пределом.

Пример: Найти

1. Находим неопределенный интеграл, методом интегрирования по частям,

Отсюда,

Тогда

Пример: Найти

Отсюда,

Тогда

<< |
Источник: Аналитическая математика. Лекции. 2016

Еще по теме 1. Неопределенные и определенные интегралы.: