<<
>>

Решение систем m линейных неравенств с двумя переменными

Дана система т линейных неравенств с двумя переменными

Знаки некоторых или всех неравенств могут быть ≥.

Рассмотрим первое неравенство в системе координат Х1ОХ2. Построим прямую

которая является граничной прямой.

Эта прямая делит плоскость на две полуплоскости 1 и 2.

Полуплоскость 1 содержит начало координат, полуплоскость 2 не содержит начала координат.

Для определения, по какую сторону от граничной прямой расположена заданная полуплоскость, надо взять произвольную точку на плоскости (лучше начало координат) и подставить координаты этой точки в неравенство. Если неравенство справедливо, то полуплоскость обращена в сторону этой точки, если не справедливо, то в противоположную от точки сторону.

Направление полуплоскости на рисунках показываем стрелкой.

Определение. Решением каждого неравенства системы является полуплоскость, содержащая граничную прямую и расположенная по одну сторону от нее.

Определение. Пересечение полуплоскостей, каждая из которых определяется соответствующим неравенством системы, называется областью решения системы (ОР).

Определение. Область решения системы, удовлетворяющая условиям неотрицательности (xj ≥ 0, j = ), называется областью неотрицательных, или допустимых, решений (ОДР).

Если система неравенств совместна, то ОР и ОДР могут быть многогранником, неограниченной многогранной областью или одной точкой.

Если система неравенств несовместна, то ОР и ОДР — пустое множество.

Пример. Найти ОР и ОДР системы неравенств и определить координаты угловых точек ОДР

Решение. Найдем ОР первого неравенства: х1 + 3x2 ≥ 3.

Построим граничную прямую х1 +3x2 – 3 = 0. Подставим координаты точки (0,0) в неравенство: 1∙0 + 3∙0 > 3; так как координаты точки (0,0) не удовлетворяют ему, то решением неравенства является полуплоскость, не содержащая точку (0,0).

Аналогично найдем решения остальных неравенств системы. Получим, что ОР и ОДР системы неравенств является выпуклый многогранник ABCD.

Найдем угловые точки многогранника. Точку А определим как точку пересечения прямых

Решая систему, получим А(3/7, 6/7).

Точку В найдем как точку пересечения прямых

Из системы получим B(5/3, 10/3). Аналогично найдем координаты точек С и D: С(11/4; 9/14), D(3/10; 21/10).

Пример Найти ОР и ОДР системы неравенств

Решение. Построим прямые и определим решения неравенств. ОР и ОДР являются неограниченные многогранные области ACFM и ABDEKM соответственно.

Пример. Найти ОР и ОДР системы неравенств

Решение. Найдем решения неравенств. ОР представляет неограниченную многогранную область ABC; ОДР — точка В.

Пример. Найти OP и ОДР системы неравенств

Решение. Построив прямые, найдем решения неравенств системы. ОР и ОДР несовместны.

<< | >>
Источник: Архаров Евгений Валерьевич. Учебно–методический комплекс по дисциплине Математика Нижний Новгород, 2011. 2011

Еще по теме Решение систем m линейных неравенств с двумя переменными:

  1. 7.1. Задачи линейного программирования
  2. 7.3. Графическое решение задачи линейного программирования
  3. 17.2. МЕТОДЫ РЕШЕНИЯ ТРАНСПОРТНЫХ ЗАДАЧ
  4. Математика, естествознание и логика (0:0 От Марк[с]а)
  5. Математические и логические "перлы" у Жана Тироля
  6. Содержание дисциплины
  7. Решение систем m линейных неравенств с двумя переменными
  8. в) Сказанным определяется природа подлежащего действию уравнения и теперь необходимо показать, какой интерес преследует это действие.
  9. 4.2. СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ
  10. Приложение 3В. Линейное программирование