2.2. Математическое описание объекта измерения. Понятие об объекте измерения и его математическом описании
Объект измерения (ОИ) - это связующее звено между собственно управляемым процессом и АСУ. Несмотря на то, что ОИ несет в себе неисчерпаемое количество информации о процессе, он лишь приближенно
представляет этот процесс в информационном отношении. Поэтому для выявления информации, необходимой для оптимизации процесса управления, нужно, во-первых, выбрать и обосновать адекватную в некотором смысле модель процесса и, во-вторых, правильно выбирать ОИ. Эти вопросы связаны с отбором существенных для управления сигналов, с минимизацией информативных измеряемых параметров процесса и т.д.
Лишь имея эти два исходные момента (выбранные ОИ и адекватную модель процесса), можно приступить к решению задачи эффективной обработки совокупности первичных измерительных сигналов, которая может быть сформулирована следующим образом: при заданном ОИ и выбранной модели процесса необходимо преобразовать ОИ таким образом, чтобы достаточно оперативно и достоверно получать информацию о параметрах модели управляемого процесса.
Состояние ОИ описывается совокупностью конечного числа величин X]X2,..,Xn Изменение этих величин во времени характеризует поведение ОИ, то есть процессы, протекающие в нем.
Дня установления соответствия состояния или поведения ОИ предъявляемым к нему требованиям вводится специальные критерии поведения объекта. Эти критерии могут быть техническими, точностными, временными, психологическими, гигиеническими и др.
В общем случае вводится несколько показателей исследуемого объекта Y] Y2,..,Yk. Все эти определяются по состоянию объекта измерения Y = A{Xn} Yk = Ak {!,..., Xn},где Aj - вид преобразования, который необходимо осуществить над объектом измерения, чтобы получить показатель качества объекта исследования Y..
Из изложенного следует, что любая ИИС должна определять составляющие объекта измерения Х],..,ХП и затем путем обработки результатов этих измерений определять показатели качества объекта исследования Y],..,Yk. Составляющие объекта исследования X]t..,Xn являются входными сигналами ИИС.
Прежде чем создать ИИС для исследования того или иного объекта, необходимо на основании предварительных теоретических и экспериментальных исследований сформировать объект измерения.
После того, как выявлены составляющие объекта измерения X]X2,..,Xn, необходимо проанализировать взаимосвязи между ними. В результате этого анализа выясняется, какие из составляющих X]X2,..,Xn являются взаимонезависимыми, а какие зависят друг от друга. Целью такого анализа, в конечном счете, является минимизация числа составляющих, которые должны быть непосредственно измерены.
Очевидно, что если все составляющие X]X2,..,Xn взаимонезависимы, то они обязательно должны в дальнейшем и все измеряться. Если же окажется, что некоторые из них (или все) взаимозависимы, то общее число
составляющих, подлежащих непосредственно измерению, может быть сокращено. В этом случае достаточно измерить лишь взаимонезависимые составляющие, а из зависимых измерить только те, по которым могут быть определены оставшиеся. Таким образом, общее число составляющих, подлежащих непосредственно измерению, может быть сокращено до M=N-j, где j - число уравнений, связывающих между собой взаимозависимые составляющие.
Это обстоятельство в дальнейшем может принести большой эффект, так как позволит сократить общее число первичных преобразователей информационно-измерительной системы.
Для пояснения сказанного приведем пример.
Пусть объектом исследования является электрическая цепь, представляющая собой нагрузку, подключенную к источнику питания. Состояние этого объекта в каждый момент времени характеризуется тремя параметрами (N=3): напряжением источника питания U, током I, протекающим через нагрузку и сопротивлением нагрузки R. В данном примере все эти три параметра объекта исследования являются одновременно и составляющими объектами измерения. Анализ объекта (электрической цепи) показывает, что его параметры U,I и R взаимосвязаны между собой (U=I*R). Поэтому нет необходимости измерять отдельно все эти величины. Достаточно измерить лишь любые две из них, а третью подсчитать по их значениям, то есть определить косвенным путем.Этот пример показывает, какой большой эффект дает анализ взаимосвязей между составляющими объекта измерения.
Взаимосвязи должны быть проанализированы не только качественно, но и количественно. Качественный анализ показывает, какие из составляющих объекта независимы друг от друга. А какие взаимосвязаны. Но он совершенно не позволяет судить о том, сильные (жесткие) ли эти связи или слабые. Если эти связи слабые и практические ими можно пренебречь, то мы не можем нескольким составляющим достаточно просто и, главное, точно определить другие, слабо связанные с первыми.
Таким образом, одной из важнейших задач является количественная оценка взаимосвязей между составляющих объекта измерения.
Знание взаимосвязей между отдельными составляющими позволить в дальнейшем определить алгоритмы нахождения некоторых составляющих по другим, с которыми связаны первые. Чем точнее будет найден этот алгоритм, тем точнее будет измерены показатели объекта исследования и его состояние или поведение.
Возникает вопрос о точности количественной оценки взаимосвязей между составляющими объекта измерения. Очевидно, при прочих равных условиях, чем точнее определены количественные взаимосвязи, тем лучше. Но, с другой стороны, повышенные точности количественной оценки взаимосвязи между составляющими сопряжено с большими трудностями и неизбежно приводит к усложнению алгоритма нахождения одних составляющих через другие. Поэтому точность количественной оценки
взаимосвязей должна быть выбрана разумной и целиком и полностью согласована с той необходимой точностью, которая допускается при измерениях тех или иных составляющих объекта измерения.
Следующей важной задачей является изучение свойств составляющих объект измерения. Знание этих свойств позволит в дальнейшем синтезировать оптимальные алгоритмы измерения параметров объекта исследования, выбрать необходимые типы измерительных преобразователей и определить частоты их опроса.
Перечисленные задачи могут быть решены на основании математического описания объекта измерения.